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taxation with multiple dimensions of agent heterogeneity. 
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possibility that individuals have multiple optimal incomes. 
Using a perturbation approach, optimal tax formulas are 
derived that account for the possibility that individuals 
have multiple optima and, hence, account for the possi-
bility that individuals jump between their optimal income 
levels when the tax schedule is perturbed. The magnitude of 
these effects is quantified, thereby augmenting the optimal 

tax formulas from Saez (2001) with additional “jumping 
effect” terms. The paper provides a partial characterization 
of when individuals with multiple optimal incomes may 
exist under the optimal tax schedule. Finally, the paper 
derives a new methodology to simulate optimal income 
tax schedules with multidimensional heterogeneity. This 
method is implemented numerically, showing that individ-
uals with multiple optimal income levels can exist under 
the optimal tax schedule.
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1 Introduction

The canonical Mirrlees (1971) optimal income taxation problem examines how to best

redistribute labor income among a population of individuals who differ only in terms

of how productive they are. However, in reality, individuals differ on many dimensions

such as preferences for consumption relative to leisure, labor supply elasticities, and

participation costs of being in the labor force. Understanding how the results from the

Mirrlees optimal tax model generalize to settings with richer individual heterogeneity is

thus an important agenda for both economists and policy-makers.

The fundamental challenge with extending the results from Mirrlees’s optimal tax

problem to settings where individuals differ on many (unobservable) dimensions is the

possibility that some individuals have multiple optimal income levels under the optimal

tax schedule.1 In the approach developed by Piketty (1997), Diamond (1998), and Saez

(2001), optimal income tax schedules are derived by considering small variations to the

tax schedule. However, if some individuals have multiple optimal income levels, then these

individuals will not respond smoothly to a small variation in the tax schedule; instead,

they will “jump” between their initially optimal income levels, which complicates the

analysis of optimal taxation. Typically the optimal income taxation literature (both

in settings with unidimensional agent heterogeneity and with multidimensional agent

heterogeneity) has assumed away the presence of individuals with multiple optimal income

levels.2 While we will show that, under standard assumptions, one can rule out the

possibility that individuals have multiple optimal income levels when they differ only in

terms of how productive they are, we show that it is, in general, impossible to rule out

the presence of individuals with multiple optima when heterogeneity is multidimensional.

The first part of this paper develops a general theory of optimal income taxation with

multidimensional agent heterogeneity that accounts for the possibility that individuals

have multiple optimal income levels. We consider a population of individuals who differ

on many arbitrary dimensions and choose labor supply to maximize their own utility.

The government chooses an income tax schedule to maximize the total welfare of this

population taking into account agents’ behavioral responses to tax changes.3 To derive

a formula for the optimal tax schedule, we analyze the welfare impacts of a novel tax

1This paper will only be concerned with agent heterogeneity that is unobservable to the government,
or equivalently, heterogeneity that the government does not wish to condition the tax schedule on. This
is in direct contrast to the tagging literature (e.g., Akerlof (1978), Cremer et al. (2010), or Mankiw and
Weinzierl (2010)) whereby the government bases taxes on observable characteristics.

2To the best of our knowledge, we do not know of any papers that account for the possibility that some
individuals have multiple optimal income levels in settings with multidimensional agent heterogeneity.
However, using a mechanism design approach, Hellwig (2010) explores the possibility that individuals
have multiple optimal income levels in a setting with unidimensional heterogeneity.

3Thus, both the action space of the agents and the policy space of the government are unidimensional.
This is in contrast to papers such as Kleven et al. (2009) or Golosov et al. (2014), which consider
multidimensional action and policy spaces.
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perturbation. Our perturbation approach applies insights from Golosov et al. (2014)

and Jacquet et al. (2013) to mathematically formalize the perturbation approach from

Saez (2001) while retaining Saez’s (2001) core economic intuition. We allow for the

possibility that individuals have multiple optimal income levels and, thus, jump between

these optimal income levels in response to our perturbation. We quantify the magnitude of

these jumping effects and show that the optimal tax formula consists of multidimensional

versions of the mechanical, elasticity, and income effect terms originally discussed in Saez

(2001) as well as additional jumping effect terms.

We then derive a partial characterization of when individuals will have multiple opti-

mal income levels (or, equivalently, when jumping effects will occur). Our first result is

that when individuals only differ in terms of how productive they are, no individual will

ever have multiple optimal income levels under the optimal tax schedule given continu-

ity assumptions on the productivity distribution and sensible assumptions on individual

utility. We then use this result to show that certain classes of problems with multiple di-

mensions of heterogeneity will also never yield an individual with multiple optima under

the optimal tax schedule. Our second result, however, proves the existence of sensible

conditions for which some individuals will have multiple optimal income levels under the

optimal tax schedule when heterogeneity is multidimensional.

The second part of this paper develops and implements a new method to numeri-

cally simulate optimal income tax schedules when agents have multiple dimensions of

heterogeneity and some individuals (potentially) have multiple optimal incomes. Our

key contribution is showing we can differentiate the governments optimality condition

to yield a computable differential equation that characterizes the optimal tax schedule.4

This differential equation holds at all income levels for which no individual with multiple

optima locates. If no individuals have multiple optimal incomes, we can simply solve

this differential equation to yield the optimal tax schedule.5 If, on the other hand, indi-

viduals do have multiple optimal incomes, we prove that the optimal tax schedule will

be non-differentiable at these income levels and that there will be bunching.6 Hence,

we augment our simulation procedure to solve the resulting piece-wise differential equa-

tion, searching over the individual who has multiple optimal incomes and the size of the

discontinuities in the marginal tax rates at their optimal incomes. We then consider a

4This is useful because it yields an expression for the optimal marginal tax rate at a given income
level that is not a function of the optimal marginal tax rate at any other income level. This is in contrast
to the optimality condition from, for example, Saez (2001) in which the optimal marginal tax rate at a
given income level is a function of the marginal tax rates at incomes above the given income level.

5We show numerically that in unidimensional problems, our method yields identical tax schedules to
the Hamiltonian approach a la Mirrlees (1971) or Saez (2001).

6Our optimal tax formulas also allow for the possibility of bunching at non-differentiable points of
the tax schedule. While bunching has been largely assumed away in the optimal tax literature using the
tax perturbation approach, bunching has been explored extensively using mechanism design approaches,
see, for example, Lollivier and Rochet (1983), Guesnerie and Laffont (1984), and Ebert (1992).
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numerical example where individuals differ not only in productivity but also in curvature

of disutility over labor (which is inversely proportional to the elasticity of earnings with

respect to the tax rate). We illustrate that our method can solve for tax schedules when

agent heterogeneity is multidimensional and is able to handle the possibility that some

individuals have multiple optimal income levels.

We are not the first paper to explore optimal taxation with multidimensional agent

heterogeneity. Assuming that individuals have a single optimal income level, Mirrlees

(1986) derives optimality conditions using a mechanism design approach, although the

equations prove to be unwieldy and computationally intractable. Saez (2001) conjectures

that the optimal tax formulas he derives can be extended to multiple dimensions of

heterogeneity if one simply averages the relevant labor supply elasticities. Jacquet and

Lehmann (2020) show formally that this conjecture holds under the assumption that no

individuals have multiple optimal income levels.7 8 Our primary contributions are (1)

proving that individuals can have multiple optima under sensible conditions when agent

heterogeneity is multidimensional, and (2) showing that by quantifying and accounting for

jumping effects, which arise when individuals have multiple optima, we can characterize

the optimal tax schedule in multidimensional settings.

While the presence of individuals with multiple optima has typically been assumed

away in the optimal tax literature, Hellwig (2010) explores this possibility using a mech-

anism design approach in the context of a general unidimensional incentive problem,

proving the existence of an agent with multiple optima when there are mass points in

the type distribution.9 In contrast, we use a tax perturbation approach to quantify the

jumping effects that result from individuals with multiple optimal incomes and show

that individuals with multiple optima can exist with smooth type distributions if agent

heterogeneity is multidimensional.

Finally, prior work has utilized a number of different approaches to simulate optimal

income tax schedules. Mirrlees (1971) showed that one can solve the unidimensional

optimal income tax problem using a system of equations derived from Hamiltonian op-

timization. Mirrlees’s Hamiltonian approach has been used not only in optimal income

taxation papers with unidimensional heterogeneity, e.g., Saez (2001), but also in papers

7Scheuer and Werning (2016) also note in an appendix that one can average the relevant elasticities
to generalize the optimal tax formula to account for multidimensional heterogeneity if no individuals
have multiple optimal income levels.

8Additionally, a number of papers, such as Boadway et al. (2002), Choné and Laroque (2010), and
Lockwood and Weinzierl (2016), have explored how adding various specific forms of heterogeneity impacts
different aspects of the tax schedule.

9Moreover, the literature on optimal taxation with extensive margin effects also allows for the possibil-
ity that individuals have multiple optima; however, individuals can only be indifferent between working
and non-working (e.g., see Jacquet et al. (2013), Choné and Laroque (2005), Saez (2002), and Diamond
(1980)). Our paper is, to our knowledge, the first to explicitly take into account the possibility that
individuals have two non-zero optimal incomes in a multidimensional setting.
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with multidimensional agent heterogeneity where labor supply decisions can be rewrit-

ten as a function of a unidimensional parameter (e.g., Choné and Laroque (2010) and

Lockwood and Weinzierl (2016)). Alternatively, other papers have used iterative meth-

ods to solve for the optimal tax schedule in both unidimensional and multidimensional

settings (e.g., Mankiw et al. (2009) or Jacquet and Lehmann (2020)).10 However, the

Hamiltonian approach does not appear to be feasible with multiple, arbitrary dimensions

of heterogeneity (given the number of incentive compatibility constraints) and we found

the iterative method impossible to adapt to the situation in which some individuals have

multiple optimal income levels due to numerical instability. Thus, we contribute by de-

veloping a novel simulation method that allows for agents to differ on many, arbitrary

dimensions and allows for the possibility that some individuals have multiple optimal

income levels.

The rest of the paper proceeds as follows: Section 2 states the optimal taxation problem

we consider and discusses elasticity concepts as well as important assumptions, Section 3

derives first order conditions for the optimal schedule with multidimensional heterogene-

ity, Section 4 discusses our results about the existence (and non-existence) of individuals

with multiple optimal income levels, Section 5 develops our simulation methodology and

presents the results of our simulations, and Section 6 concludes.

2 The Mirrlees Optimal Tax Problem with Multiple

Dimensions of Heterogeneity

In this section we discuss the setup of the Mirrlees optimal taxation problem when indi-

viduals have multiple dimensions of heterogeneity. We present the government problem,

individual preferences, as well as a number of elasticity concepts that will be necessary

to employ the perturbation argument.

2.1 Preferences

The model consists of a population of individuals, indexed by a productivity level n ∈ N
with N ⊆ R+ and a second type of heterogeneity α ∈ A (note, α could represent a

vector of characteristics). We assume the distribution of productivities is continuous,

while the distribution of α is discrete. We assume α comes from a discrete distribution

for simplicity and to match our simulation procedure.11 Denote the joint CDF of types by

10Other papers, such as Judd et al. (2018), have explored optimal taxation with multidimensional
heterogeneity with discrete types using brute force numerical optimization.

11A continuous α distribution merely complicates the exposition. Appendix B derives optimality
conditions for a continuous α distribution. As will be seen later, the key difference is that when α
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F (n, α), the conditional CDF of n given α as F (n|α), and probability mass function for

α as p(α). We assume the conditional distribution F (n|α) is continuously differentiable ∀
α ∈ A. Individuals have utility over consumption, denoted c, and labor supply, denoted

l, according to a utility function that varies with α: u(c, l;α), with uc > 0, ul < 0, ucc ≤
0, ull < 0.12 Individuals are able to transform their labor supply into income, denoted

z, with a simple linear production function: z = nl. If we denote the tax function as

T (z), we have that c(z) ≡ z−T (z), which allows us to write the individual maximization

problem as:

max
z

u
(
c(z),

z

n
;α
)

Note, even when we express the utility function in terms of z, we still use the notation

uc
(
z − T (z), z

n
;α
)

and ul
(
z − T (z), z

n
;α
)

to refer to the derivatives with respect to the

first and second arguments, respectively. Using this simple change of variables allows us

to think of people as having preferences over pre-tax income z as well as post-tax income

c(z); this formulation will be useful going forward as it simplifies the notation in both

the written and graphical exposition.

2.2 Government Problem

The government gets to set the tax function T (z) and seeks to maximize a general so-

cial welfare function that sums an increasing transformation of individual utility levels,

W (u;n, α), subject to a revenue constraint that total consumption in society plus ex-

ogenous government expenditures, E, must not exceed total income.13 Additionally, the

government faces incentive compatibility constraints: individuals will choose income lev-

els to maximize their utility subject to the tax schedule. The government cannot observe

n or α for any individual, but can observe the distribution of types F (n, α). We can write

is continuously distributed, the marginal tax schedule can be continuous at incomes for which some
individuals have multiple optimal incomes; whereas, when α is discretely distributed, we show that at
these income levels, the marginal tax schedule is discontinuous - see Proposition 5.

12Labor supply should be interpreted broadly as a composite measure of the long-term total effort a
worker exerts; hence, it should be interpreted as a function of hours worked, work intensity as well as
human capital investments individuals make in themselves prior to working.

13See Jacquet and Lehmann (2020) for further details on this general social welfare function.
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the government problem as follows:

max
T (z)

∑
α∈A

∫ ∞
0

W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
dF (n|α)p(α)

s.t.
∑
α∈A

∫ ∞
0

c∗(n, α)dF (n|α)p(α) + E ≤
∑
α∈A

∫ ∞
0

z∗(n, α)dF (n|α)p(α)

z∗(n, α) ∈ argmax
z

u
(
z − T (z),

z

n
;α
)
∀n, α

c∗(n, α) = z∗(n, α)− T (z∗(n, α))

Note, for ease of notation, we have omitted that agents’ optimal choice of income, z∗,

will be a function of the tax schedule. In order to characterize the optimal tax schedule,

we will use a variational approach as in Saez (2001). To start with, we write down

the government’s Lagrangian as follows, noting that z∗(n, α) satisfies agents’ incentive

compatibility constraints:

L =
∑
α∈A

∫ ∞
0

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n|α)p(α)

where, without loss of generality, we set E = 0, and have used T (z∗(n, α)) = z∗(n, α) −
c∗(n, α). The variational argument that we employ will maximize this Lagrangian, tak-

ing into account the incentive compatibility constraints (i.e., taking into account that

z∗(n, α) varies with the tax schedule). However, we next take a slight detour to discuss

technical assumptions and to define a number of elasticities that will be useful towards

understanding how changing the tax schedule affects the government Lagrangian.

2.3 Technical Assumptions

In order for us to employ a variational argument to derive the optimal tax schedule, we

need to make the following standard assumption on individual preferences:

Assumption 1. The Single Crossing Property (SCP) holds: − ul(c, zn ;α)
nuc(c, zn ;α)

is decreasing in

n ∀c, z, α.

Assumption 1 ensures that individual preferences satisfy a kind of monotonicity: for a

given α, the steepness of indifference curves in (income, consumption) space is increasing

in productivity n. Sufficient conditions for (SCP) to hold are that − 1
n
ul
(
c, z

n
;α
)

is strictly

decreasing in n (i.e., the utility cost of labor is convex) and that uc
(
c, z

n
;α
)

is weakly

increasing in n (i.e., leisure and consumption are complements). We will use Assumption

1 primarily to ensure that income exhibits monotonicity in productivity n:

Lemma 1. If (SCP) holds, then z∗(n, α) is non-decreasing in productivity n ∀ α. More-
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over, if (SCP) holds, z∗(n, α) is increasing in n ∀ α whenever T ′(z) exists.

Proof. See Appendix A.1.

With Lemma 1, we can prove the following Lemma:

Lemma 2. If (SCP) holds, the set of individuals with multiple optimal income levels is

countable.

Proof. See Appendix A.2.

Graphically, the main idea of the proof is illustrated in Figure 1, which depicts an

impossible scenario under (SCP). Importantly, under (SCP), indifference curves for two

individuals with the same α cannot cross more than once. Thus, if individual (n1, ᾱ)

has two optima (illustrated by the blue indifference curve), then no individual (n2, ᾱ)

can optimally locate in between his two optima (illustrated by the red indifference curve

crossing the blue indifference curve twice). Thus, for fixed α, each individual with multiple

optima can be associated with a unique jump discontinuity of z∗(n, α). Because z∗(n, α)

is a weakly monotonic function in n for each α by (SCP), it can only have a countable

number of jump discontinuities. As such, the number of individuals with multiple optima

is countable for a fixed α and, because the union of countable sets is also countable, the

number of individuals with multiple optima across all α’s is also countable.

Figure 1: Impossible Scenario Under (SCP)

Next, for each α, denote m1(α),m2(α), ... as the productivity levels (in ascending

order) of individuals with multiple optimal income levels under a given tax schedule T

(for ease of notation, we have suppressed that mi(α) is a function of the tax schedule T ).

We denote z∗−i (α) and z∗+i (α) as the minimum and maximum optimal income levels for

7



type (mi(α), α):

z∗−i (α) = min

(
argmax

z
u

(
z − T (z),

z

mi(α)
;α

))

z∗+i (α) = max

(
argmax

z
u

(
z − T (z),

z

mi(α)
;α

))
Then mi(α) satisfies the following indifference condition:

u

(
z∗−i (α)− T (z∗−i (α)),

z∗−i (α)

mi(α)
;α

)
= u

(
z∗+i (α)− T (z∗+i (α)),

z∗+i (α)

mi(α)
;α

)

We now make an assumption that there exists a minimum distance D1 between the

productivity levels of individuals who have multiple optimal income levels. Specifically,

we assume:

Assumption 2. Under the optimal tax schedule, there exists a minimum distance D1 > 0

s.t. mi(α)−mi−1(α) > D1 ∀ α.

This assumption is needed to rule out pathological settings whereby all individuals with

rational productivity levels have multiple optima, for example. We also make an assump-

tion that there exists a minimum distance D2 between income levels for which there exists

someone with multiple optimal income levels:

Assumption 3. Define the set of income levels {zmulti } to be the income levels such

that there exists an individual with optimal income z∗ ∈ {zmulti } that has other optimal

income levels. Under the optimal tax schedule, there exists a minimum distance D2 > 0

s.t. zmulti − zmulti−1 > D2.

We will also make the following assumption on the shape of the optimal tax schedule:

Assumption 4. T (z) is “piece-wise smooth”: T (z) is continuous ∀z and twice continu-

ously differentiable ∀z except at most for a countable set of kinks, {Ki}, separated by a

minimum distance, Ki −Ki−1 > D3.14

2.4 Elasticities

Our goal is to analyze the effect on the government Lagrangian of perturbing the tax

schedule T (z) in the direction of a twice continuously differentiable schedule τ(z).15 For-

mally, for µ ∈ R+, we define the perturbed tax schedule T̃ (z) = T (z) + µτ(z). We then

14We show in Section 4 that if an optimal tax schedule has an individual with multiple optimal income
levels, it cannot be twice continuously differentiable at these income levels. Thus, it is insufficient to
consider everywhere twice continuously differentiable tax functions when some individuals potentially
have multiple optimal income levels.

15τ(z) could, in principle, also be piece-wise smooth, but this additional complication will not be
needed to derive our main optimality condition.
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derive the change in the government Lagrangian as µ→ 0. In other words, we compute

the Gateaux derivative of the government Lagrangian following the local perturbation

of the tax schedule T (z) in the direction of τ(z).16 However, before doing so, we define

two elasticities, the compensated elasticity and the income effect parameter. The com-

pensated elasticity, Zc
n,α, captures how type (n, α) changes her optimal income when we

decrease her marginal tax rate while leaving her tax liability unchanged; this corresponds

to perturbing the tax schedule in the direction of τ(z) = −(z − z∗(n, α)).17 The income

effect, ηn,α, captures how type (n, α) changes her optimal income when we decrease her

tax liability while leaving her marginal tax rate unchanged; this corresponds to a per-

turbation in the direction of τ(z) = −1. First, let’s derive an expression for how type

(n, α)′s optimal income changes as we move in the direction of any τ(z).

Under the perturbed tax schedule, whenever T ′(z) exists, an agent’s optimal income

must satisfy her FOC:

uc

(
z∗ − T (z∗)− µτ(z∗),

z∗

n
;α

)
(1− T ′(z∗)− µτ ′(z∗))+ 1

n
ul

(
z∗ − T (z∗)− µτ(z∗),

z∗

n

)
= 0

Next, we show that if an individual has a unique optimal income located at a point where

T ′′(z) exists and is continuous, this individual’s second order condition must hold strictly:

Lemma 3. An individual’s second order condition must hold strictly if the individual has

a unique optimal income level and the tax schedule at this unique optimal income level is

twice continuously differentiable.

Proof. See Appendix A.3.

Thus, for individuals with a unique optimal income located at a point where T ′′(z)

exists and is continuous, we can use the implicit function theorem to describe how their

optimal income changes with µ for any τ(z):18

∂z∗

∂µ

∣∣∣
µ=0

=
u∗cτ

′(z∗) + u∗cc(1− T ′(z∗))τ(z∗) + τ(z∗)
n
u∗cl

u∗cc(1− T ′(z∗))2 + 2
n
u∗cl(1− T ′(z∗)) + 1

n2u∗ll − u∗cT ′′(z∗)
(1)

where, in Equation 1, we have omitted that z∗ is a function of (n, α) and where u∗c =

uc

(
z∗(n, α)− T (z∗(n, α)) , z

∗(n,α)
n

;α
)

denotes the marginal utility of consumption for

(n, α) at their optimal income level (u∗cc, u
∗
cl, and u∗ll are similarly defined).

16This approach is used in Golosov et al. (2014), for example.
17Conceptually, the compensated elasticity captures the behavioral response of (n, α) to a “rotation

in the tax schedule” around her initially optimal income z∗(n, α).
18The insight that one can define elasticities taking into account the non-linearity of the tax schedule

using the implicit function theorem so long as the second order condition holds strictly comes from
Jacquet et al. (2013).
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We can now define the compensated elasticity for type (n, α) as follows:19

Zc
n,α ≡

1− T ′(z∗)
z∗

dz∗

dµ

∣∣∣
µ=0,τ(z)=−(z−z∗(n,α))

= −1− T ′(z∗)
z∗

u∗c
u∗cc(1− T ′(z∗))2 + 2

n
u∗cl(1− T ′(z∗)) + 1

n2u∗ll − u∗cT ′′(z∗)

And we can define the income effect parameter for type (n, α) as follows:

ηn,α ≡ (1− T ′(z∗))dz
∗

dµ

∣∣∣
µ=0,τ(z)=−1

= (1− T ′(z∗))
−u∗cc(1− T ′(z∗))− 1

n
u∗cl

u∗cc(1− T ′(z∗))2 + 2
n
u∗cl(1− T ′(z∗)) + 1

n2u∗ll − u∗cT ′′(z∗)

We can now rewrite how optimal income changes as we move in the direction of any τ(z)

(i.e., rewrite Equation 1) in terms of these elasticities:

∂z∗

∂µ

∣∣∣
µ=0

= −
Zc
n,αz

∗

1− T ′(z∗)
τ ′(z∗)− ηn,α

1− T ′(z∗)
τ(z∗) (2)

Finally, note that all of these elasticities are endogenous to the tax schedule; hence an

individual’s elasticity under the optimal tax schedule will be different from her empiri-

cal elasticity under the observed tax schedule. Also, note that this formulation defines

elasticities under a given, potentially non-linear, tax schedule as in Jacquet et al. (2013),

Scheuer and Werning (2017), and Golosov et al. (2014). This is contrasted to the elas-

ticity definitions in Saez (2001), which are defined under a linearized schedule. This will

be useful going forward as it enables us to write our first order conditions for the optimal

tax schedule as a function of the true earnings density as opposed to the “virtual density”

of incomes as in Saez (2001).

3 Optimal Tax Schedule

We will now derive a differential equation that characterizes the optimal tax schedule

assuming that all agents have one global optimal income level under the optimal tax

schedule. We will then relax this assumption and show how this changes the differential

equation characterizing the optimal tax schedule.

19Alternatively, we could have defined the uncompensated elasticity as Zun,α ≡
1−T ′(z∗)

z∗
dz∗

dµ |µ=0,τ(z)=−z
and defined the compensated elasticity via the Slutsky equation Zcn,α = Zun,α − ηn,α.
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3.1 All Individuals Have a Unique Optimal Income

We know that starting from the optimal tax schedule, the derivative of the government

Lagrangian in the direction of τ(z) must be 0. Thus, the optimal schedule must satisfy

the following condition:

∂

∂µ

[∑
α∈A

∫ ∞
0

[
W

(
u

(
z∗ − T (z∗)− µτ(z∗),

z∗

n
;α

)
;n, α

)
+ λ(T (z∗) + µτ(z∗))

]
dF (n|α)p(α)

] ∣∣∣∣
µ=0

= 0

where, for brevity, we omit that z∗ is a function of (n, α) as well as the perturbed tax schedule

T (·) + µτ(·). Taking the derivative w.r.t. µ and evaluating at µ = 0, the optimal tax schedule

must satisfy:

∑
α∈A

∫ ∞
0

[
−Wu(u∗)u∗cτ(z∗) + λ

(
∂T (z∗)

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dF (n|α)p(α) = 0 (3)

where u∗ = u
(
z∗(n, α)− T (z∗(n, α)) , z

∗(n,α)
n ;α

)
and Wu = ∂W (u;n, α)/∂u. The tax schedule

is (potentially) non-differentiable at a set of kink points {Ki}, where we denote NKi(α) as the

set of n’s for each α bunching at kink point Ki.
20 We can then split Equation 3 as follows:

∑
α∈A

∫
N\{NKi (α)}

[
−Wu(u∗)u∗cτ(z∗) + λ

(
T ′(z∗)

∂z∗

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dF (n|α)p(α)

+
∑
Ki

∑
α∈A

∫
NKi (α)

[−Wu(u∗)u∗cτ(Ki) + λτ(Ki)] dF (n|α)p(α) = 0

(4)

In writing Equation 4, we use the fact that at any z for which T (z) is not differentiable, almost

all bunching individuals have ∂z∗

∂µ |µ=0 = 0; hence ∂T (z∗)
∂µ |µ=0 = 0.21

First, we deal with the term involving individuals who bunch at kinks. Let us denote the

mass of individuals locating at kink Ki as pK(Ki). We then have:

∑
Ki

∑
α∈A

∫
NKi (α)

[−Wu(u∗)u∗cτ(Ki) + λτ(Ki)] dF (n|α)p(α) =
∑
Ki

λτ(Ki) (1− ω(Ki)) pK(Ki)

20Note, we only consider kinks for which marginal tax rates are greater above the kink than below
the kink (i.e., generate bunching). Kinks which feature marginal tax rates that are lower above the kink
than below will always generate an unchosen set of income levels. Marginal tax rates will not be defined
at unchosen income levels, so we can WLOG assume the tax schedule is differentiable at these incomes.

21In particular, ∂z∗

∂µ |µ=0 = 0 for all individuals locating at z∗ ∈ {Ki} other than the measure 0 set of
individuals whose FOC holds at the limiting tax rates to the left or the right of the kink point. The
remaining bunching individuals do not have their FOC satisfied: their FOC is strictly negative as we
approach Ki from the left and is strictly positive as we approach Ki from the right. Thus, for sufficiently
small µ, the FOC for each of these bunching individuals is still strictly negative as we approach Ki from
the left and is still strictly positive as we approach Ki from the right, i.e., Ki remains their optimal
income. We can arbitrarily set ∂z∗

∂µ |µ=0 = 0 for the measure 0 set of individuals whose FOC holds at the
limiting tax rates as it has no impact on the integral.
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where pK(Ki) =
∑

α

∫
NKi (α) dF (n|α)p(α) and ω(Ki) = 1

pK(Ki)

∑
α

∫
NKi (α)

Wu(u∗)u∗c
λ dF (n|α)p(α)

denotes the average social welfare weight at kink income Ki.

Next, we rewrite Equation 4 using the elasticity expression for ∂z∗

∂µ |µ=0 from Equation 2

and integrating over the optimal income distribution H(z∗|α) instead of the skill distribution

F (n|α). We can do this because z∗(n, α) is strictly increasing in n when T ′(z∗) exists (see

Lemma 1):

∑
α∈A

∫
Z\{Ki}

[
−Wu(u∗)u∗cτ(z∗)− λ

(
T ′(z∗)

(
Zcz∗,αz

∗

1− T ′(z∗)
τ ′(z∗) +

ηz∗,α
1− T ′(z∗)

τ(z∗)

)
− τ(z∗)

)]
dH(z∗|α)p(α)

+
∑
Ki

λτ(Ki) (1− ω(Ki)) pK(Ki) = 0

(5)

where H(z∗|α) = F (n(z∗, α)|α) and where u∗, u∗c , Z
c, and η are now functions of (z∗, α), e.g.,

u∗ = u
(
z∗ − T (z∗), z∗

n(z∗,α) ;α
)

.

We now consider a specific τ(z) that consists of a uniform increase in the marginal tax

rate for incomes in [z̃, z̃ + dz̃], a uniform increase in the tax liability by dz̃ for incomes above

z̃ + dz̃ + dz̃2, and twice continuously differentiable expansions for incomes between [z̃ − dz̃2, z̃]

and for incomes between [z̃+ dz̃, z+ dz̃+ dz̃2]. In particular τ(z) equals (see Appendix A.4 for

τ(z) defined over the entire domain):


τ(z) = 0 if z ≤ z̃ − dz̃2

τ(z) = z − z̃ + dz̃2 if z ∈ [z̃, z̃ + dz̃]

τ(z) = dz̃ if z ≥ z̃ + dz̃ + dz̃2

We choose z̃ and dz̃ such that no element of {Ki} is in [z̃ − dz̃2, z̃ + dz̃ + dz̃2] (this is

possible by Assumption 4). Figure 2 depicts the tax schedule and the perturbed tax schedule in

consumption-income space (when µ = 1).22 Note that in Figure 2, income z is a bad conditional

on a given level of consumption so that utility is increasing to the north-west.

22We consider µ = 1 purely for ease of graphical illustration.
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Figure 2: Perturbing the Non-Linear Tax Schedule (µ = 1)

The perturbation that we consider is novel yet builds upon the approaches devised by Saez

(2001), Golosov et al. (2014), and Jacquet et al. (2013). Our perturbation keeps the same

valuable economic intuition from Saez’s (2001) tax perturbation but is twice continuously dif-

ferentiable; thus, our perturbation avoids the small bunching and jumping effects induced by

kinks in Saez’s (2001) perturbation. Moreover, rather than considering the effects that this

perturbation has on the government’s Lagrangian in a heuristic manner as in Saez (2001), we

apply the insights of Golosov et al. (2014) by computing the Gateaux derivative of the gov-

ernment Lagrangian. Finally, our perturbation is useful in that it will allow us to explicitly

analyze jumping responses that occur when individuals have multiple optimal incomes while

still retaining the insight of Jacquet et al. (2013) that the implicit function theorem can be

applied to ensure smooth responses to tax changes whenever individuals have unique optimal

income levels.

Plugging our chosen τ(z) function into Equation 5, dividing by dz̃λ and then taking the

limit as dz̃ → 0, we get Proposition 1:

Proposition 1. When all individuals have a unique optimal income level, the optimal tax

schedule satisfies the following differential equation at all income levels z̃ for which the optimal

tax schedule is differentiable:∫ ∞
z̃

(1− ω̄(z∗)) dH(z∗)− T ′(z̃)

1− T ′(z̃)
z̃Z̄cz̃h(z̃)−

∫
(z̃,∞)\{Ki}

η̄z∗
T ′(z∗)

1− T ′(z∗)
dH(z∗) = 0 (6)

where ω̄(z∗) =
∑

α
Wu(u∗)u∗c

λ p(α|z∗) denotes the average social welfare weight at income z∗; Z̄cz̃ =∑
α Z

c
z̃,αp(α|z̃) denotes the average compensated elasticity at income z̃; and η̄z∗ =

∑
α ηz∗,αp(α|z∗)

denotes the average income effect parameter at z∗.

13



Proof. See Appendix A.5.

Equation 6 gives us a differential equation that the optimal tax schedule must satisfy at all

points of differentiability. Equation 6 is the same as the equation derived in Saez (2001), except

that in Equation 6, the elasticities and social welfare weights are averaged over the α distribution

and we allow for kink points. Equivalently, Equation 6 extends the analysis from Jacquet and

Lehmann (2020) to allow for kink points in the tax schedule that induce bunching (where Jacquet

and Lehmann (2020) extend the analysis of Saez (2001) to the multidimensional setting when the

tax schedule is everywhere differentiable and no one has multiple optima). Using the language

from Saez (2001), the first term represents the mechanical effect, which captures the direct

effect of our perturbation on the government’s Lagrangian, holding behavioral responses of

agents constant. The second term represents the elasticity effect, which captures the behavioral

responses of agents earning z̃ to an increase in marginal tax rates at z̃. Finally, the third term

represents the income effect, which captures the behavioral responses of agents earning above

z̃ to an increase in their tax liability.

3.2 What If Individuals Have Multiple Optimal Incomes?

In deriving Equation 6, we assumed that all agents had one global optimal income level under

the optimal tax schedule. However, there is no reason why this assumption need be true.

We now derive the differential equation characterizing the optimal tax schedule allowing for

a countable number of agents to have multiple optimal income levels.23 To do so, first let us

assume that there exists at most one n for each α that has multiple optimal income levels under

the optimal tax schedule. Using the notation from Subsection 2.3, we denote the productivity

levels of these multiple optima individuals as m(α).24 Specifically, m(α) satisfies the following

indifference condition:

u

(
z∗−(α)− T (z∗−(α)),

z∗−(α)

m(α)
;α

)
= u

(
z∗+(α)− T (z∗+(α)),

z∗+(α)

m(α)
;α

)

where z∗−(α) and z∗+(α) denote the minimum and maximum incomes chosen by type (m(α), α),

respectively. Note, we have suppressed that z∗−(α), z∗+(α), and m(α) are also functions of the

tax schedule. Using this notation, we rewrite the government Lagrangian as follows:

L =
∑
α∈A

∫ m(α)

0

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n|α)p(α)+

∑
α∈A

∫ ∞
m(α)

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n|α)p(α)

Before deriving how the government’s Lagrangian changes in response to a tax perturbation,

we first explore how types with multiple optima change in response to a tax perturbation. We

23Lemma 2 ensures the number of individuals with multiple optimal incomes is countable.
24If no type α individual has multiple optimal incomes, set m(α) = 0.
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do this by differentiating the indifference condition with respect to µ:

∂

∂µ

[
u

(
z∗−(α)− T (z∗−(α))− µτ(z∗−(α)),

z∗−(α)

m(α)
;α

)
−

u

(
z∗+(α)− T (z∗+(α))− µτ(z∗+(α)),

z∗+(α)

m(α)
;α

)]∣∣∣∣
µ=0

= 0

(7)

noting that m(α), z∗−(α), and z∗+(α) are all functions of µ. However, by the agent’s first order

condition, the derivatives of the first term and second term of Equation 7 w.r.t. z∗−(α) and

z∗+(α) (respectively) are zero; thus, both ∂z∗−(α)/∂µ and ∂z∗+(α)/∂µ are multiplied by zero.

Rearranging for ∂m(α)/∂µ|µ=0, we get:25

∂m(α)

∂µ

∣∣∣
µ=0

=
u∗+c (α) τ (z∗+(α))− u∗−c (α) τ (z∗−(α))

u∗−l (α) z
∗−(α)
m(α)2 − u∗+l (α) z

∗+(α)
m(α)2

(8)

where u∗+c (α) = uc

(
z∗+(α)− T (z∗+(α)), z

∗+(α)
m(α) ;α

)
and u∗−l (α) = ul

(
z∗−(α)− T (z∗−(α)), z

∗−(α)
m(α) ;α

)
etc.

Next, we use Leibniz’s integral rule to take the derivative of the government Lagrangian in

the direction of τ(z), starting from the optimal tax schedule:

∑
α∈A

∫ ∞
0

[
−Wu(u∗)u∗cτ(z∗) + λ

(
∂T (z∗)

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dF (n|α)p(α)+

∑
α∈A

[
W
(
u∗−(α)

)
+ λT (z∗−(α))

∂m(α)

∂µ

∣∣∣
µ=0

]
f(m(α)|α)p(α)−

∑
α∈A

[
W
(
u∗+(α)

)
+ λT (z∗+(α))

∂m(α)

∂µ

∣∣∣
µ=0

]
f(m(α)|α)p(α) = 0

Note that in the first term above, we integrate over the entire set of individuals (even those

with multiple optima). The value that we assign to ∂T (z∗)
∂µ |µ=0 for those with multiple optima is

irrelevant because the set with multiple optima is countable and hence measure 0, so does not

affect the integral in the first term. Noting that u∗−(α) = u∗+(α) ∀ α, we get:

∑
α∈A

∫ ∞
0

[
−Wu(u∗)u∗cτ(z∗) + λ

(
∂T (z∗)

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dF (n|α)p(α)+

∑
α∈A

λ
(
T
(
z∗−(α)

)
− T

(
z∗+(α)

)) ∂m(α)

∂µ

∣∣∣
µ=0

f(m(α)|α)︸ ︷︷ ︸
jumping effects

p(α) = 0
(9)

Equation 9 is the same as Equation 3 except Equation 9 includes jumping effects. These

jumping effects capture the fact that when we perturb the tax schedule, each type (m(α), α)

may now strictly prefer one of their optimal income levels and thus jump to the income level

25Even if T (z) is not differentiable at z∗− (and/or z∗+), Equation 8 still holds. See Appendix A.6.
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they prefer.26 Moreover, if type (m(α), α) jumps for any given perturbation to the tax schedule,

a small mass of individuals with type α and n close to m(α) will also jump in response to the

change in the tax schedule (as optimal utility is continuous in n for each α).

We now explore the jumping effects in Equation 9 in more detail. We know by Equation 8

that the value of these effects will depend on the tax changes experienced at z∗−(α) and z∗+(α).

Let’s consider the same specific τ(z) function we did earlier:27


τ(z) = 0 if z ≤ z̃ − dz̃2

τ(z) = z − z̃ + dz̃2 if z ∈ [z̃, z̃ + dz̃]

τ(z) = dz̃ if z ≥ z̃ + dz̃ + dz̃2

where we choose z̃ and dz̃ such that no element of {zmulti } or {Ki} is within [z̃−dz̃2, z̃+dz̃+dz̃2]

(this is possible by Assumption 3 and Assumption 4).

First, consider an α with z∗+(α) < z̃ − dz̃2. Because τ (z∗+(α)) = τ (z∗−(α)) = 0, we have

∂m(α)/∂µ|µ=0 = 0. Thus, the jumping effect for this α is equal to 0. Next consider an α with

z∗−(α) < z̃ − dz̃2 and z∗+(α) > z̃ + dz̃ + dz̃2. For this α, τ (z∗+(α)) = dz̃ and τ (z∗−(α)) = 0

so that the jumping effect in Equation 9 is equal to:

λ
(
T
(
z∗−(α)

)
− T

(
z∗+(α)

)) u∗+c (α) dz̃

u∗−l (α) z
∗−(α)
m(α)2 − u∗+l (α) z

∗+(α)
m(α)2

f (m(α)|α) ≡ J1(α)λdz̃

Figure 3 depicts the jumping behavioral response captured by J1(α). Specifically, Figure 3

shows an individual (m(α), α) with two optimal income levels, z∗−(α) and z∗+(α), under the

optimal tax schedule, where z∗+(α) > z̃+ dz̃+ dz̃2 and z∗−(α) < z̃− dz̃2. Under the perturbed

schedule, our indifferent individual now strictly prefers z∗−(α) to z∗+(α) given she experiences

a drop in consumption of dz̃ at z∗+(α) but not at z∗−(α). Consequently, (m(α), α) will jump

down to z∗−(α). This jumping movement is captured by the red arrow in Figure 3 below.

Now consider an α with z∗−(α) > z̃ + dz̃ + dz̃2. For this α, τ (z∗+(α)) = τ (z∗−(α)) = dz̃ so

that the jumping effect in Equation 9 is equal to:

λ
(
T
(
z∗−(α)

)
− T

(
z∗+(α)

)) u∗+c (α) dz̃ − u∗−c (α) dz̃

u∗−l (α) z
∗−(α)
m(α)2 − u∗+l (α) z

∗+(α)
m(α)2

f (m(α)|α) ≡ J2(α)λdz̃

Figure 4 depicts the jumping behavioral response captured by J2(α). Specifically, Figure 4

shows an individual (m(α), α) with two optimal income levels, z∗−(α) and z∗+(α), under the

optimal tax schedule, where z∗−(α) > z̃+dz̃+dz̃2. Under the perturbed schedule, our indifferent

26How do we know that (m(α), α) will jump from his minimum optimal income z∗−(α) to his maximum
optimal income z∗+(α) or vice versa (as opposed to jumping to another income between these two
levels)? After the perturbation, there will be a new individual of type α with multiple optima, where,
by continuity, his minimum and maximum optimal incomes will be very close to z∗−(α) and z∗+(α). By
the (SCP), no other individual of type α can locate in between these two new optimal incomes, hence,
(m(α), α) must have jumped to an income right around z∗+(α) or z∗−(α).

27Again, see Appendix A.4 for a definition of τ(z) over its entire domain.
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Figure 3: J1(α) Jumping Effect (µ = 1)

individual will typically prefer z∗+(α) to z∗−(α) given she experiences a drop in consumption

of dz̃ at both income levels which is more costly (in terms of a reducing utility) at z∗−(α) due

to concavity of utility. Consequently, (m(α), α) will typically jump up to a new optimal income

level very close to z∗+(α). This jumping movement is captured by the red arrow in Figure 4

below. Note, however, if preferences are quasi-linear in consumption, this individual will not

jump as u∗+c (α) = u∗−c (α), implying J2(α) = 0.28

Because we choose z̃ and dz̃ s.t. {zmulti } /∈ [z̃−dz̃2, z̃+dz̃+dz̃2], we do not need to consider

the possibility that either z∗−(α) or z∗+(α) lie inside [z̃ − dz̃2, z̃ + dz̃ + dz̃2]. Thus, there are

no other jumping effects that can occur as a result of our tax perturbation. Dividing Equation

9 by dz̃λ and taking the limit as dz̃ → 0 as in Subsection 3.1, we get:∫ ∞
z̃

(1− ω̄(z∗)) dH(z∗)− T ′(z̃)

1− T ′(z̃)
z̃Z̄cz̃h(z̃)−

∫
(z̃,∞)\{Ki}

η̄z∗
T ′(z∗)

1− T ′(z∗)
dH(z∗)

+
∑
α∈A

[
J1(α)1

(
z∗−(α) < z̃ < z∗+(α)

)
+ J2(α)1

(
z∗−(α) > z̃

)]
p(α) = 0

(10)

Equation 10 gives us a condition that the optimal tax schedule must satisfy at all z̃ /∈
{zmulti } ∪ {Ki} under the assumption that there exists at most one n for each α with multiple

optimal income levels.

Finally, we relax the assumption that there exists at most one n for each α with multiple

optima. Instead, we allow there to exist a countable number of n′s with multiple optima for

28Alternatively, if ucl is sufficiently positive (so that consumption and leisure are strong substitutes),
this individual will jump down as she now prefers z∗−(α) to z∗+(α).
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Figure 4: J2(α) Jumping Effect (µ = 1)

each α. Using the notation from Subsection 2.3, we denote mi(α) as the ith productivity level

with multiple optimal incomes, and denote their minimum optimal income as z∗−i (α) and their

maximum optimal income as z∗+i (α). Finally, we denote the number of individuals with multiple

incomes for a given α as M(α) (which can also be countably infinite or zero). We can augment

Equation 10 to yield a general formula for the optimal tax schedule that allows for the possibility

that some individuals have multiple optimal income levels:

Proposition 2. The optimal tax schedule satisfies the following differential equation at all

income levels z̃ /∈ {zmulti } at which the optimal tax schedule is differentiable:∫ ∞
z̃

(1− ω̄(z∗)) dH(z∗)− T ′(z̃)

1− T ′(z̃)
z̃Z̄cz̃h(z̃)−

∫
(z̃,∞)\{Ki}

η̄z∗
T ′(z∗)

1− T ′(z∗)
dH(z∗)

∑
α∈A

M(α)∑
i=1

[
J1i(α)1

(
z∗−i (α) < z̃ < z∗+i (α)

)
+ J2i(α)1

(
z∗−i (α) > z̃

)]
p(α) = 0

(11)

Proof. See Appendix A.7.

Equation 11 extends the optimality condition derived in Jacquet and Lehmann (2020) to

allow for the possibility that individuals have multiple optimal income levels (and to allow

for bunching at kink points).29 The possibility of multiple optima individuals results in the

inclusion of the jumping effect terms, J1 and J2. J1i(α) is negative provided that T
(
z∗+i (α)

)
−

29When heterogeneity is unidimensional, Equation 11 is equivalent to the optimality condition from
Mirrlees (1971); see Appendix A.8.

18



T
(
z∗−i (α)

)
> 0.30 Hence, ignoring J1 jumping effects will typically lead us to overestimate

the welfare impact of a small tax increase. However, J2i(α) is (weakly) positive provided that

T
(
z∗+i (α)

)
− T

(
z∗−i (α)

)
> 0 and that consumption and leisure are not sufficiently strong

substitutes. Hence, ignoring J2 jumping effects will typically lead us to (weakly) underestimate

the welfare impact of a small tax increase.

4 Theoretical Results about Individuals with Multi-

ple Optima

Up to this point, we have derived an equation for the optimal tax schedule with multidimen-

sional agent heterogeneity, explicitly accounting for the possibility that individuals have multiple

optimal income levels. In this section, we provide a partial characterization of when the optimal

tax schedule will exhibit individuals with multiple optima.

4.1 No Individuals with Multiple Optima

When employing the tax perturbation approach, papers in this literature have typically as-

sumed that all individuals respond smoothly to tax changes, thus indirectly assuming that no

individual has multiple optimal income levels. While it turns out to be impossible to rule out

the existence of individuals with multiple optima when we have multiple dimensions of het-

erogeneity, with one dimension of heterogeneity, we can rule out individuals having multiple

optimal income levels. Proposition 3 gives conditions on primitives such that no individuals

will have multiple optima under the optimal tax schedule.

Proposition 3. If individuals only differ in terms of productivity (so that everyone has the same

value of α), indifference curves are convex in (c, z) space, and z
nucl

ul
uc
− ul − z

null is increasing

in z along each individual’s indifference curve, then no individual has multiple optimal income

levels under the optimal tax schedule; hence, no jumping behavioral responses are present under

the optimal tax schedule.31

Proof. See Appendix A.10

Proposition 3 is inspired by Theorem 2(v) in Mirrlees (1971), although Mirrlees states the

result without proof. Mirrlees states that in order to rule out individuals with multiple optima,
z
nucl

ul
uc
− ul − z

null must be increasing in z along each individual’s indifference curve. Mirrlees

does not state that the productivity density need be continuous nor does he place a restriction

30Positive marginal tax rates imply T
(
z∗+i (α)

)
− T

(
z∗−i (α)

)
> 0. See Appendix A.9 for a proof that

J1i(α) < 0 assuming T
(
z∗+i (α)

)
− T

(
z∗−i (α)

)
> 0.

31Where z
nucl

ul
uc
− ul − z

null increasing in z along each individual’s indifference curve means that

∂
∂z

(
z
nucl

(
ĉ, zn

) ul(ĉ, zn )
uc(ĉ, zn )

− ul
(
ĉ, zn

)
− z

null
(
ĉ, zn

))
> 0 ∀ n, ū, where ĉ(z;n, ū) solves u

(
ĉ, zn

)
= ū.
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on the shape of indifference curves; however, we believe both of these restrictions are necessary.

Proposition 2.6 from Hellwig (2010), which also formally proves Theorem 2(v) from Mirrlees

(1971), requires that the productivity density is continuous, z
nucl

ul
uc
−ul− z

null is increasing in z

along each individual’s indifference curve, and that an additional condition on utility is satisfied,

which, in turn, implies convexity of indifference curves. We believe our proof (which is entirely

different from the proof of Proposition 2.6 in Hellwig (2010)) is helpful towards understanding

the underlying intuition behind why the conditions in Proposition 3 imply that jumping effects

cannot occur under the optimal tax schedule.

A sketch of the proof for Proposition 3 goes as follows: suppose there is an individual with

two optima under the optimal tax schedule. Consider a perturbation that increases the marginal

tax rate at an income just below z∗− but keeps the individual with multiple optima indifferent

between her two optima. This is possible to do: we simply change tax rates in the region

(z∗−, z∗+) so that τ(z∗+) = u∗−c
u∗+c

τ(z∗−) (see Equation 8 above). Note, changing tax rates in the

region (z∗−, z∗+) does not create any behavioral responses in this region because, by (SCP), no

one locates in (z∗−, z∗+) as we only have one dimension of heterogeneity. Such a perturbation

results in an elasticity effect for the individual with income just less that z∗−, and an income

and mechanical effect for all those with incomes z∗ > z∗+. Jumping effects are 0 under this

perturbation given we specifically chose a perturbation that keeps the individual with multiple

optima unchanged. Now consider increasing the marginal tax rate at an income just above z∗+.

This induces an elasticity effect for the individual just above z∗+, and income and mechanical

effects for all those with incomes z∗ > z∗+ . Under the optimal tax schedule, the effect of both

perturbations should be 0. However, our assumptions on the shape of indifference curves in

Proposition 3 give us that the elasticity effect at z∗+ is smaller than the elasticity effect at z∗−.

Thus, given both perturbations lead to the same income and mechanical effects but the former

perturbation induces a larger elasticity effect, the total effect of both perturbations cannot both

be 0. Hence, we could not have been at the optimal tax schedule.

Note, Proposition 3 does not give a condition on preferences such that no one will have

multiple optima for any tax schedule - this is impossible under reasonable assumptions (for

example, a simple indifference curve argument shows that an individual will have multiple

optima if the marginal tax rate schedule is piece-wise linear with decreasing rates). As such, an

understanding of jumping behavioral responses will be necessary a priori when analyzing the

effects of tax reforms starting from sub-optimal tax schedules.

Next, it is worthwhile to discuss the assumptions in Proposition 3. First, we remind the

reader that a maintained assumption throughout this paper is that F (n|α) is continuously dif-

ferentiable ∀α (so that F (n) is continuous if all individuals have the same α). This assumption

is important because Hellwig (2010) shows that an individual will have multiple optima in the

case of unidimensional heterogeneity whenever the productivity distribution has mass points.

Second, it seems reasonable to assume that individuals’ indifference curves are convex in (c, z)

space - this is a standard assumption on preferences requiring that individuals be compensated

with more and more consumption as their labor supply increases. The other assumption in

Proposition 3, z
nucl

ul
uc
− ul − z

null is increasing in z for fixed utility and n, seems relatively
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obtuse and it is not readily clear that this assumption is sensible. However, Corollary 1 shows

that, in fact, this assumption applies in a wide class of common utility functions:

Corollary 1. If utility takes the form: u(c, z;n) = v(c) − (z/n)1+k/(1 + k) where k > 0, no

individual will have multiple optima under the optimal schedule.

Proof. This follows from the conditions in Proposition 3.

Moreover, through trial and error it seems exceedingly difficult to find a utility function that

satisfies standard properties uc > 0, ul < 0, ucc ≤ 0, ull < 0 as well as the (SCP) yet violates the

condition that z
nucl

ul
uc
− ul − z

null is increasing in z along each individual’s indifference curve.

Finally, it is worth highlighting a special class of utility functions with multiple dimensions

of heterogeneity for which no individual will have multiple optima under the optimal schedule.

The idea behind this result is that some special classes of utility functions with two dimensions

of heterogeneity yield an optimal tax problem that is isomorphic to a one dimensional problem

so that we can apply Proposition 3.

Corollary 2. Suppose utility takes the form: u(c, z/n;α) = αv(c)− (z/n)1+k/(1 + k). If k > 0

and F (n) is continuously differentiable, all individuals will have a unique optimum under the

optimal tax schedule.32

Proof. See Appendix A.11.

4.2 Individuals with Multiple Optima

If there is only one dimension of heterogeneity, we can generally rule out individuals with multi-

ple optimal income levels under the optimal tax schedule. However, it turns out to be impossible

to extend this result to multiple dimensions. We now proceed to show that it is not possible

to find a multidimensional analogue to Proposition 3 in cases with arbitrary multidimensional

heterogeneity. In particular, we show that it is possible for individuals to have multiple optima

under the optimal schedule even if the second dimension of heterogeneity is binary (so that there

are only two values of α), the productivity distributions F (n|α) are continuously differentiable

∀α, and the utility functions of each type satisfy standard assumptions:33

Proposition 4. Suppose there are two α types, each with a different utility function. There

exist two utility functions that satisfy (SCP) and the conditions in Proposition 3 yet lead to an

32Throughout this paper, we assume that F (n|α) is continuously differentiable ∀α. To prove Corollary
2, we require that F (n) is continuously differentiable. F (n) will be continuously differentiable if either
the support of F (n|a) is the same ∀α or if f(n|α)→ 0 ∀α at the endpoints of their support.

33Proposition 2.4 from Hellwig (2010) proves that some individual will have multiple optimal income
levels in a unidimensional tax model whenever the productivity density has mass points. Conversely,
Proposition 4 shows that the optimal schedule can lead to an individual with multiple optima even when
F (n|α) is continuously differentiable ∀α.
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individual with multiple optima under the optimal tax schedule (i.e., jumping effects are present

under the optimal tax schedule).

Proof. See Appendix A.12.

The underlying intuition for Proposition 4 is as follows. As seen in Figure 3, in order for an

individual to have multiple optima we need (a) marginal tax rates to decrease over a certain

portion of the income distribution (so that a portion of consumption schedule is convex), and

(b) indifference curves for at least one type to not be overly steep. Suppose that there are two

types of individuals, {α1, α2}, each with a different utility function: u(c, z/n;αi) = u(i)(c, z/n)

for i = {1, 2}. Further suppose that, for a given productivity level n, α2 individuals have steeper

indifference curves compared to α1 individuals. Now, consider a population that consists only

of α2 individuals so that there is only productivity heterogeneity. Mirrlees (1971) showed that

when individuals only differ in terms of how productive they are, tax rates will always be

between 0 and 1. Moreover, tax rates must always be 0 at the top and the bottom of the

income distribution (see Propositions 6 and 7 below); hence, when all individuals are type α2,

there will be a region of decreasing tax rates in the optimal tax schedule. Thus, provided that

the utility function we choose for α1 generates sufficiently flat indifference curves, we will have at

least one α1 individual that has multiple optimal income levels under the optimal tax schedule

that ensues when only type α2 individuals exist. Finally, consider a population that consists of

both α1 and α2 individuals. We can use continuity arguments to show that as the proportion of

α2 individuals in society becomes arbitrarily close to 1, the optimal tax schedule gets arbitrarily

close to the optimal tax schedule that ensues when only type α2 individuals exist; hence, at

least one α1 individual will have multiple optimal income levels when society consists of some

arbitrarily small, yet positive, proportion of type α1 individuals.

Finally, we show that the optimal tax schedule will be non-differentiable at any income level

for which someone has multiple optimal incomes as long as the optimal tax schedule, T (z), is

everywhere increasing:

Proposition 5. If indifference curves are convex in (c, z) space, z
nucl

ul
uc
−ul− z

null is increasing

in z along each individual’s indifference curve, and T (z) is everywhere increasing, optimal

marginal tax rates increase discontinuously (generating bunching) ∀ z ∈ {zmulti }.

Proof. See Appendix A.13.

Proposition 5 is important for performing optimal tax simulations: any time an individual

has multiple optimal incomes, there will typically be a kink point in the optimal tax schedule

that induces bunching.

4.3 Additional Results

Finally, we briefly present two additional results that will be useful for conducting simulations:
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Proposition 6. Optimal marginal tax rates are 0 at the bottom of the income distribution,

T ′(z) = 0, as long as the support of the skill distribution, supp(f(n|α)), is closed and bounded ∀
α, and z /∈ {zmulti } where z denotes the lowest income chosen in society under the optimal tax

schedule.

Proof. See Appendix A.14.

Proposition 7. Optimal marginal tax rates are 0 at the top of the income distribution, T ′(z̄) =

0, as long as the support of the skill distribution, supp(f(n|α)), is closed and bounded ∀ α,

and z̄ /∈ {zmulti } where z̄ denotes the highest income chosen in society under the optimal tax

schedule.

Proof. See Appendix A.15.

Propositions 6 and 7 extend the classic results of Sadka (1976) and Seade (1977) to the case

of multidimensional agent heterogeneity. While Diamond (1998), Saez (2001), and Diamond

and Saez (2011) have argued that the “zero marginal rates at the top and bottom” are highly

local and therefore likely policy irrelevant, these results are nonetheless helpful for conducting

numerical simulations as they provide boundary conditions for Equation 11.

5 Optimal Tax Simulations

This section derives a method that can be used to simulate optimal income tax schedules with

multidimensional agent heterogeneity and illustrates how to apply this method via a numerical

example. There are two goals of this numerical exercise: (1) to show that our novel simulation

method yields identical results to Mirrlees’s Hamiltonian simulation method when heterogeneity

is unidimensional, and (2) to illustrate that our method can solve for tax schedules when agent

heterogeneity is multidimensional and is able to handle the possibility that some individuals

have multiple optimal income levels.

5.1 General Simulation Methodology

Recall that Equation 11 characterizes the optimal tax schedule at all income levels z̃ where the

marginal tax rate exists and all individuals at z̃ have no other optimal incomes. However, even

ignoring jumping effects, this differential equation is difficult to solve directly as the optimal

marginal tax rate at z̃ depends on the tax schedule everywhere above z̃ through the income and

mechanical effects. The presence of jumping effects amplifies the difficulty of solving Equation 11

as quantifying jumping effects requires knowing which individuals have multiple optimal income

levels and what their multiple optimal income levels are (which in turn requires knowing the

entire tax schedule). Previous optimal tax simulations have thus either (1) used Mirrlees’s

Hamiltonian approach in unidimensional applications even if they derive the schedule in terms

of observable sufficient statistics (e.g., Saez (2001) or Lockwood and Weinzierl (2016)) or (2)

23



assumed away jumping effects and iterated on Equation 11 until convergence (e.g., Mankiw et al.

(2009) or Jacquet and Lehmann (2020)). However, the Hamiltonian approach does not appear

to be feasible with multidimensional heterogeneity given the number of incentive compatibility

constraints, and we found the iterative method impossible to adapt to the situation in which

some individuals have multiple optimal income levels due to numerical instability.34

As such, we derive a new method to simulate optimal income tax schedules. First, note that

Equation 11 holds at all income levels z̃ except for a countable set of income levels (which are

separated by a minimum distance) at which multiple optima individuals locate and at income

levels where the tax schedule is non-differentiable. As such, the derivative of Equation 11 with

respect to z̃ must also be 0 on all the intervals which do not contain an individual with multiple

optima or a non-differentiable point of the tax schedule. Differentiating Equation 11 is useful

because the jumping effects are not a function of z̃, so that the derivative of the jumping terms

with respect to z̃ are zero. Differentiating Equation 11 with respect to z̃ we arrive at:

∑
α∈A

[
−1 + ω(z̃, α) +

T ′(z̃)

1− T ′(z̃)
ηz̃,α

]
h(z̃|α)p(α)− ∂

∂z̃

[∑
α∈A

T ′(z̃)

1− T ′(z̃)
z̃Zcz̃,αh(z̃|α)p(α)

]
= 0

(12)

where ω(z̃, α) = Wu(ũ)ũc
λ denotes the social welfare weight on individual (n(z̃, α), α) with ũ =

u
(
z̃ − T (z̃), z̃

n(z̃,α) ;α
)

.

Equation 12 is a third order differential equation (the compensated elasticity Zc depends on

the second derivative T ′′(z), hence the derivative of Zc depends on the third derivative T ′′′(z)).

As with Equation 11, Equation 12 holds for all z̃ at which the tax schedule is smooth and no

individual locating there has a second optimal income. We can simplify Equation 12 into a

second order differential equation by substituting in h(z̃|α) = f(n(z̃, α)|α)∂n(z∗,α)
∂z∗ |z∗=z̃ along

with the full expressions for ∂n(z∗,α)
∂z∗ |z∗=z̃ and Zcz̃,α (see Appendix A.16 for the derivation of

Equation 13):

∑
α∈A

[
−1 + ω(z̃, α) +

T ′(z̃)

1− T ′(z̃)
ηz̃,α

]
∂n(z∗, α)

∂z∗

∣∣∣
z∗=z̃

f(n(z̃, α)|α)p(α)+

∂

∂z̃

[∑
α∈A

ũcT
′(z̃)

z̃
n2 ũcl(1− T ′(z̃)) + 1

n2 ũl + z̃
n3 ũll

f(n(z̃, α)|α)p(α)

]
= 0

(13)

where ũc = uc

(
z̃ − T (z̃), z̃

n(z̃,α) ;α
)

, etc.

Let’s now discuss how one could use Equation 13 to solve for optimal tax rates. We will

assume that the tax schedule is always twice continuously differentiable except at points where

individuals have multiple optimal incomes (note, by Proposition 5, we cannot assume that

the tax schedule is differentiable at these points).35 First, suppose that no individual has

34We found that small changes in the tax schedule which cause individuals to jump were not handled
well numerically.

35Any tax schedule we find to be optimal within the class of functions that are smooth except at
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multiple optimal income levels so that the optimal tax schedule is everywhere twice continuously

differentiable (this is an endogenous assumption and needs to be verified once we have solved for

the optimal tax schedule). We can then solve Equation 13 using standard differential equation

techniques given initial values for T ′(z) and T (z) as well as the Lagrange multiplier, λ. As

we show in Proposition 6, with a closed and bounded skill distribution, the marginal tax rate

on the lowest income chosen in society, T ′(z), is 0. Given the initial condition T ′(z) = 0, our

simulation procedure then searches over the values of T (z) and λ that maximize total social

welfare subject to the government’s budget constraint.36 Finally, we check to ensure that the

income level assigned to each individual is, in fact, their unique global optimal income, i.e., we

check that zFOC(n, α) = z∗(n, α) where zFOC(n, α) denotes the income schedule that results

from solving (n, α)′s FOC under the proposed optimal tax schedule.

If our above method yields an income schedule zFOC s.t. zFOC(n, α) 6= z∗(n, α) for some

(n, α), then our proposed optimal tax schedule is not valid given it does not satisfy agent’s

incentive compatibility constraints. We therefore augment our procedure to allow for individuals

to have multiple optima. First, we assume that only one individual, (m, a), has two optimal

income levels under the optimal tax schedule. Now, we must search over the parameter space of

λ, T (z), (m, a), T ′j1, T
′
j2 to find the values that maximize total welfare subject to the government’s

budget constraint, where T ′j1, T
′
j2 denote the jumps in the marginal tax rates that occur at

(m, a)′s minimum and maximum optimal incomes.37 We then check to ensure that the income

level assigned to each individual is, in fact, their unique global optimal income given the solution

to Equation 13, other than for individual (m, a), who has two global optimal incomes. If not,

we repeat the above exercise but assume there exist two individuals with multiple optima, etc.

5.2 Specific Numerical Example

We now discuss a specific numerical example with multidimensional heterogeneity. The second

dimension of heterogeneity α captures the curvature of the disutility over labor, which is in-

versely proportional to the elasticity of earnings with respect to the tax rate. First, we assume

the second dimension of heterogeneity is binary (i.e., α takes on two values), the government

{zmulti } will actually be optimal in the broader class of all piece-wise smooth functions. The logic is the
same as the logic behind the result that any function that is optimal within the class of twice continuously
differentiable functions is optimal within the class of all piece-wise smooth functions (e.g., see Roughan
(2016)).

36Note, as is always the case when simulating optimal tax schedules, we are finding a locally optimal
tax schedule, not necessarily a globally optimal tax schedule.

37Roughly speaking, for a given set of parameter values, we use Equation 13 to solve for tax rates until
we hit the income level s.t. (m, a)′s FOC is satisfied. We call this income level z∗− and add T ′j1 to the
marginal tax rate. We then set the income density for type a to 0 as we know by the (SCP) that no a
type can locate between (z∗−, z∗+). We then continue to use Equation 13 to solve for tax rates until we
get to an income level, denoted z∗+, where utility at z∗+ is equal to utility at z∗− for type (m, a). We
then turn the density for type a back on and add T ′j2 to the marginal tax rate at z∗+. Note this is only a
rough outline - for exact details (e.g., how we deal with bunching at the kink points), see Appendix C.1.

25



social welfare function is defined by W (u;n, α) = log(u), and utility takes the following form:38

u
(
z − T (z),

z

n
;αi

)
= z − T (z)−

(
z
n

)1+αi

1 + αi
for i = 1, 2

where α1 = 2, α2 = 4. Note, if marginal tax rates are constant, compensated elasticities are

inversely proportional to αi, i.e., Zcα1
= 1

2 , Z
c
α2

= 1
4 . With this utility function and government

social welfare function, Equation 13 becomes:

2∑
i=1

(1− ω(z̃, αi))
∂n(z∗, α)

∂z∗

∣∣∣
z∗=z̃

f(n(z̃, αi)|αi)p(αi)+

∂

∂z̃

[
2∑
i=1

T ′(z̃)
1
n2 (1 + αi)

(
z̃
n

)αi f(n(z̃, αi)|αi)p(αi)

]
= 0

(14)

where ω(z̃, αi) = 1
λu(z̃,αi)

, u(z̃, αi) = z̃ − T (z̃)−
(

z̃
n(z̃,αi)

)1+αi

1+αi
, n(z̃, αi) =

(
z̃αi

1−T ′(z̃)

) 1
1+αi and

∂n(z∗, αi)

∂z∗

∣∣∣
z∗=z̃

=
αi

1 + αi

(
z̃(1− T ′(z̃))

) −1
1+αi +

1

1 + αi
z̃

αi
1+αi (1− T ′(z̃))

−2−αi
1+αi T ′′(z̃)

Finally, we need to specify the twice continuously differentiable densities for each type,

f(n|α1), f(n|α2), along with the proportions of each type in society, p(α1), p(α2). Given that

one of the goals of this numerical exercise is to highlight that our simulation method can handle

the possibility of individuals with multiple optima, we choose reasonable productivity densities

that will likely generate jumping behavior. To do so, we note that in order to generate an

individual with multiple optima, we need marginal tax rates to decrease over a certain portion

of the income distribution (so that the consumption schedule is, in certain portions, convex)

and we need indifference curves for one of the types to not be overly steep (as in Figure 3).

Thus, for the type with steeper indifference curves (type α2), we select f(n|α2) such that there

is a region of n’s in which the density is increasing quickly. Assuming p(α2) is large enough,

this will generate tax rates that decline quickly over the given region. Consequently, this will

induce some individual with type α1 (who has less steep indifference curves) to have multiple

optimal incomes. The densities we choose for each type are depicted in Figure 5 below. Note,

the distribution f(n|α1) is log-normal, whereas the distribution f(n|α2) is constructed as a

cubic spline (thus twice continuously differentiable) which is single peaked and has a region in

which the density is increasing sharply. We choose the distributions so that the minimum and

maximum incomes chosen in society are the same for type α1 and α2 populations under the

optimal tax schedule. Finally, we will vary the proportions of types in society to highlight that

at high values of p(α2), type α1 will have multiple optima. See Appendix C.1 for a step-by-step

procedure of the simulation methodology for this example.

38By setting W (u;n, α) = log(u), we assume that the government seeks to maximize total (log) utility
without regard to whether income inequality is driven by productivity differences or differences in other
dimensions. This welfare function therefore does not incorporate the notion of preference neutrality as
discussed in, for example, Lockwood and Weinzierl (2016).
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Figure 5: Conditional Productivity Densities, f(n|α1) and f(n|α2)

5.3 Simulation Results

We now present simulation results for our numerical example. The first goal of our simulation

exercise is to show that in settings with unidimensional heterogeneity, our simulation method

yields identical tax schedules to the standard Mirrlees Hamiltonian method. As can be seen

in Figure 6, optimal tax rates computed using these two methods are identical for the case in

which all individuals are type 1 and the case in which all individuals are type 2. Next, note

that when all individuals are type 2, marginal tax rates decrease sharply over incomes in the

approximate range (4, 7). This sharp decline is driven by the sharp increase in the productivity

density f(n|α2) over the approximate productivity range (4, 5). Marginal tax rates then flatten

out right after the peak of f(n|α2) as the density begins to decline at a much slower rate than

which it increased (refer back to Figure 5 for a depiction of f(n|α2)).39 Finally, given this is a

numerical example to illustrate our simulation method as opposed to a calibration exercise, the

scale of incomes in Figure 6 (and all of our other simulation figures) does not hold meaning.

Next, we use our method to compute the optimal tax schedule when the population consists

of both type 1 and type 2 agents. In Figure 7, we show how the tax schedule changes as we vary

the percentage of type 2 individuals from 0% to 100%.40 Unsurprisingly, for most of the income

distribution, the optimal tax rate for x% of type 2 individuals lies somewhere in between the

optimal tax rate when 0% of the population is type 2 and when 100% of the population is type

2. Most importantly, we find that for the three dotted schedules (50% type 2, 75% type 2, and

39While it is not immediately obvious from Figure 6, both of the marginal tax schedules shown are
everywhere continuously differentiable.

40Figure 10 in Appendix C.2 plots the optimal consumption schedules for various percentages of type
2 individuals.
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Figure 6: Optimal Tax Schedules Computed Using Equation 13 and Mirrlees’s Method

90% type 2), there is a type 1 individual with multiple optimal income levels.41 This can be

seen in Figure 8 where we plot the productivity level n that chooses each income level under

the optimal tax schedule, separately for α1 types and α2 types, when 50% of the population

is type 2. In Figure 8, type α1 individuals do not choose incomes between approximately 6.2

and 6.7, which indicates that, under the optimal tax schedule, there exists a type α1 individual

with multiple optimal incomes at approximately 6.2 and 6.7.

Another important feature to note from Figure 8 is that it is possible to have an individual

with multiple optimal incomes yet no “missing mass” in the income distribution (as while no α1

type chooses an income in the approximate range (6.2, 6.7), the α2 type does choose incomes in

this range). This is important for reconciling the existence of individuals with multiple optima

with the lack of a missing density anywhere in the observed income distribution.

Ultimately, there are three key takeaways from this simulation exercise: (1) our simulation

method matches the results from the Mirrlees’s Hamiltonian method if individuals only differ

on the productivity dimension, (2) our method allows us to simulate optimal income tax sched-

ules when agent heterogeneity is multidimensional and is able to handle the possibility that

some individuals have multiple optimal income levels, and (3) optimal tax schedules can, in

practice, lead to individuals having multiple optimal incomes when agent heterogeneity is mul-

tidimensional if marginal tax rates decrease relatively quickly over some portion of the income

distribution.

41Commensurate with Proposition 5, the marginal tax schedule is discontinuous at each income level
where an individual has multiple optimal incomes. However, the discontinuities in marginal tax rates
are small (≈ 1%) so are not readily apparent in Figure 7.
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Figure 7: Optimal Tax Schedules for Various Percentages of Type 2 Individuals

Figure 8: Productivity vs. Income when 50% of the Population is Type α2
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6 Conclusion

This paper has developed a theory of optimal income taxation when agents have multiple

dimensions of heterogeneity using a perturbation method that mathematically formalizes the

approach from Saez (2001). Once we move to a setting with multidimensional heterogeneity,

we must consider the possibility that some individuals have multiple optimal incomes under the

optimal tax schedule; this leads to individuals jumping around the tax schedule in response to

small perturbations of the tax schedule. By explicitly accounting for these “jumping effects”, we

characterize the optimal tax schedule when agent heterogeneity is multidimensional. We then

provide a partial characterization of when individuals will have multiple optimal incomes under

the optimal tax schedule. In particular, we prove that this phenomenon cannot occur with

unidimensional agent heterogeneity and for a specific form of multidimensional heterogeneity.

However, we also prove that individuals with multiple optimal incomes can exist under sensible

conditions with multidimensional agent heterogeneity; hence it is, in general, impossible to rule

out individuals with multiple optimal incomes with multidimensional heterogeneity.

Finally, we develop a new methodology to simulate optimal income tax schedules that can be

applied with multidimensional agent heterogeneity. This method is characterized by a differen-

tial equation governing the evolution of the tax schedule over the income distribution along with

a search over the individuals that have multiple optimal income levels as well as the size of the

discontinuities in marginal tax rates at their optimal income levels. We implement this method

for a particular numerical example, showing that our method can solve for tax schedules when

agent heterogeneity is multidimensional and can handle the possibility that some individuals

have multiple optimal income levels.

Moving forward, this paper suggests a number of avenues for future research. First, the

techniques employed in this paper can be used to solve other screening problems with multidi-

mensional type spaces (but with unidimensional action and policy spaces), such as non-linear

pricing. Further, we speculate that analyzing jumping effects may help towards solving even

more complex problems with both multidimensional type spaces and multidimensional action

and policy spaces. Second, it is important to better understand how jumping effects manifest

in practice. While there is preliminary evidence that jumping behavior is empirically relevant,

e.g., Rios (2019), further evidence is needed on the practical importance of jumping effects. Fi-

nally, towards utilizing the framework developed in this paper to better understand tax policy,

further research is needed on the extent to which various forms of heterogeneity impact income

differences as well as a better understanding of society’s normative stance on the desirability of

redistribution when inequality is driven by different forms of heterogeneity.
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A Proofs Appendix

A.1 Proof of Lemma 1

Proof. First, we show that (SCP) =⇒ z(n, α) is non-decreasing in n. Towards a contradiction,

suppose not: ∃n3 < n2 s.t. z3 > z2, where z3 = z∗(n3), z2 = z∗(n2) (note, α is held fixed

so, for ease of notation, we will omit α as an argument). We thus have: u
(
c(z2), z2n2

)
≥

u
(
c(z3), z3n2

)
and u

(
c(z2), z2n3

)
≤ u

(
c(z3), z3n3

)
. By continuity of u in n (and hence continuity

of u
(
c(z2), z2n

)
−u

(
c(z3), z3n

)
in n), we have that ∃ n3 ≤ n ≤ n2 s.t. u

(
c(z2), z2n

)
= u

(
c(z3), z3n

)
.

Next, consider the function ĉ(z; n̄, ū) which denotes the consumption level s.t. type n̄ has utility

ū at income level z, where ū = u
(
c(z2), z2n

)
= u

(
c(z3), z3n

)
. In other words, ĉ(z; n̄, ū) implicitly

solves u
(
ĉ, zn̄
)

= ū. By construction, ĉ(z2) = c(z2) and ĉ(z3) = c(z3) (where, for ease of notation,

we omit n̄, ū as arguments from ĉ). Now consider the following derivative:

∂
∂zu

(
ĉ(z), zn

)
uc
(
ĉ(z), zn

) = ĉ′(z) +
ul
(
ĉ(z), zn

)
nuc

(
ĉ(z), zn

) = 0

This derivative is equal to zero, since u
(
ĉ(z), zn

)
= ū ∀ z. Next, WLOG suppose n2 > n (the

argument is easily adapted if instead n > n3). Then, by the SCP we know that:

0 = ĉ′(z) +
ul
(
ĉ(z), zn

)
nuc

(
ĉ(z), zn

) < ĉ′(z) +
ul

(
ĉ(z), zn2

)
n2uc

(
ĉ(z), zn2

)
Multiplying both sides of the inequality by uc

(
ĉ(z), z(s)n2

)
and integrating over [z2, z3], we get:

0 <

∫ z3

z2

[
ĉ′(z)uc

(
ĉ(z),

z

n2

)
+

1

n2
ul

(
ĉ(z),

z

n2

)]
dz

= u

(
ĉ(z3),

z3

n2

)
− u

(
ĉ(z2),

z2

n2

)
= u

(
c(z3),

z3

n2

)
− u

(
c(z2),

z2

n2

)

a contradiction.

Second, we show that (SCP) =⇒ z∗(n, α) is increasing in n whenever T ′(z) exists. Whenever

T ′(z) exists, optimal income z∗(n, α) must satisfy agents’ FOCs:

uc

(
z∗ − T (z∗),

z∗

n
;α

)
(1− T ′(z∗))− 1

n
ul

(
z∗ − T (z∗),

z∗

n
;α

)
= 0

Now suppose that for n1 < n2, z∗(n1;α) = z∗(n2;α) = z∗. By the FOCs for n1 and n2 we

know:
1
n1
ul

(
z∗ − T (z∗), z

∗

n1
;α
)

uc

(
z∗ − T (z∗), z

∗

n1
;α
) =

1
n2
ul

(
z∗ − T (z∗), z

∗

n2
;α
)

uc

(
z∗ − T (z∗), z

∗

n1
;α
)
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However, this violates the (SCP), a contradiction. Given Lemma 1, it must be the case that

z∗(n, α) is increasing in n whenever T ′(z∗) exists.

A.2 Proof of Lemma 2

Proof. Suppose (SCP) holds, and fix α (we will omit α as an argument for ease of notation).

Further, suppose under a given tax schedule an individual with productivity level n1 has multiple

optimal income levels. Denote her minimum optimal income level z−1 and her maximum optimal

income level z+
1 , where z+

1 > z−1 . We know by the proof of Lemma 1, that no other individual

with n2 6= n1 can have an optimal income level between z−1 , z
+
1 by monotonicity of z∗(n, α) in

n.

Next, by slightly adjusting the proof of Lemma 1, we can show that there cannot be multiple

individuals with the same multiple optimal income levels. Towards a contradiction, suppose

that individual n2 has the same multiple optimal income levels as individual n1. Thus, we have:

u
(
c(z−1 ),

z−1
n2

)
= u

(
c(z+

1 ),
z+
1
n2

)
and u

(
c(z−1 ),

z−1
n1

)
= u

(
c(z+

1 ),
z+
1
n1

)
. Next, consider ĉ(z;n1, ū)

which implicitly solves: u
(
ĉ, zn1

)
= ū where ū = u

(
c(z−1 ),

z−1
n1

)
= u

(
c(z+

1 ),
z+
1
n1

)
, i.e., ĉ(z;n1, ū)

gives us the consumption level at each income z s.t. type n1 receives utility ū. By construction,

ĉ(z−1 ) = c(z−1 ) and ĉ(z+
1 ) = c(z+

1 ) (where, for ease of notation, we have omitted the arguments

n1 and ū from ĉ(·)). WLOG, assume n2 > n1. Then, by the definition of ĉ(z) and the SCP we

know:

0 =

∂
∂zu

(
ĉ(z), zn1

)
uc

(
ĉ(z), zn1

) = ĉ′(z) +
ul

(
ĉ(z), zn1

)
n1uc

(
ĉ(z), zn1

) < ĉ′(z) +
ul

(
ĉ(z), zn2

)
n2uc

(
ĉ(z), zn2

)
Multiplying both sides of the inequality by uc

(
ĉ(z), zn2

)
and integrating over z from [z−1 , z

+
1 ],

we get:

0 <

∫ z+
1

z−1

[
ĉ′(z)uc

(
ĉ(z),

z

n2

)
+

1

n2
ul

(
ĉ(z),

z

n2

)]
dz

= u

(
ĉ(z+

1 ),
z+

1

n2

)
− u

(
ĉ(z−1 ),

z−1
n2

)
= u

(
c(z+

1 ),
z+

1

n2

)
− u

(
c(z−1 ),

z−1
n2

)

a contradiction.

Thus, we know the following: for a fixed α, if an individual has multiple optimal income

levels, no other individual can locate in between her minimum and maximum optimal income

levels, nor can another individual have the same set of optimal income levels. This means that

for a fixed level of α: (a) if an individual does have multiple optimal incomes, there must be

a jump discontinuity in the optimal income function z∗(n) (the converse is also true: a jump

discontinuity in z∗(n) implies an individual must have multiple optimal incomes by continuity of
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the utility function) and (b) each of these jump discontinuities in z∗(n) corresponds to a single

type n who has multiple optima. Because z∗(n) is weakly monotonic for each fixed α, we know

that it can only have a countable number of such jump discontinuities. Thus, we can associate

each jump discontinuity in z∗(n) to a single type n who has multiple optimal incomes, which

implies there are at most a countable number of individuals with multiple optima for each α.

Next, for each α, let denote {mi(α)} denote the countable set of types m (indexed by i)

which have multiple optimal income levels. Finally, the set of all individuals over N ×A space

that have multiple optima is given by ∪α∈A{mi(α)}, which is countable given the union of

countable sets is countable.

A.3 Proof of Lemma 3

Proof. Suppose T ′(z) exists, meaning optimal income, z∗(n, α), satisfies the following condition:

FOC(z∗, n;α) = 0

where

FOC(z, n;α) = uc

(
z − T (z),

z

n
;α
)

(1− T ′(z)) +
1

n
ul

(
z − T (z),

z

n
;α
)

Now, suppose z∗(n, α) is continuous at n1, but SOC(z∗(n1;α), n1;α) = 0 (where SOC(z, n;α) =
∂FOC(z,n;α)

∂z ).42 By continuity in z∗ at n1, we know for a small ε change in n, we have a cor-

responding small δ change in optimal income. However, the FOC at (z + δ, n1 + ε, α) will be

approximately equal to:

FOC(z + δ, n1 + ε;α) =

(
FOC(z, n;α) + ε

∂FOC(z, n;α)

∂n
+ δ

∂FOC(z, n;α)

∂z

) ∣∣∣
(z∗(n1,α),n1,α)

= ε
∂FOC(z, n;α)

∂n

∣∣∣
(z∗(n1,α),n1,α)

> 0

where the second equality comes from the fact that the SOC is 0 for (n1, α) and we know that

the FOC must be 0 for type (n1, α) when evaluated at her optimal income, z∗(n1;α). The last

inequality comes from the fact that by (SCP), ∂FOC
∂n

∣∣∣
(z∗(n1,α),n1,α)

> 0 (see A.3.1 below).

Since FOC(z + δ, n1 + ε;α) > 0, z + δ cannot be the optimal income for type (n1 + ε, α)

(as the optimal income must set the FOC to 0 when T ′ exists). Hence, the optimal income

function z∗(n, α) cannot be continuous at n1. In other words, if the SOC holds weakly for a

given (n1, α), there must be a jump discontinuity in the optimal income function z∗(n, α) at n1,

meaning that type (n1, α) has multiple optimal income levels under the given tax function.

Finally, because we know that if an agent’s SOC = 0 at an agent’s optimal income level,

then she has multiple optimal income levels, we also know that if an agent is to only have one

42Note, ∂FOC(z,n;α)
∂z exists as we assume T ′′(z) exists.
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optimal income level, her SOC < 0 at this unique optimal income level.43

A.3.1 Showing ∂FOC
∂n

∣∣∣
(z∗(n1,α),n1,α)

> 0

Differentiating the FOC w.r.t. n gives:

∂FOC

∂n
= − 1

n2

(
uclz(1− T ′) + ull

z

n
+ ul

)
We will show by (SCP), that

(
uclz(1− T ′) + ull

z
n + ul

)
< 0 at (z∗(n1, α), n1, α). The SCP gives

us:

− 1

n2u2
c

(
−ucul −

z

n
ulluc +

z

n
ulucl

)
< 0

which gives

−ucul −
z

n
ulluc +

z

n
ulucl > 0

At (z∗(n1, α), n1, α), we know the FOC is 0, i.e., −uc(1− T ′) = 1
nul. Thus, we get:(

−ucul −
z

n
ulluc − zuc(1− T ′)ucl

) ∣∣∣
(z∗(n1,α),n1,α)

> 0

Dividing through by −uc we get:(
ul +

z

n
ull + z(1− T ′)ucl

) ∣∣∣
(z∗(n1,α),n1,α)

< 0

Thus we get ∂FOC
∂n

∣∣∣
(z∗(n1,α),n1,α)

> 0.

A.4 Full τ(z) Function

We define τ(z) to be a twice continuously differentiable. Hence, we need a τ(z) function that

satisfies (τ(z̃ − dz̃2), τ ′(z̃ − dz̃2), τ ′′(z̃ − dz̃2)) = (0, 0, 0), (τ(z̃), τ ′(z̃), τ ′′(z̃) = (dz̃2, 1, 0), (τ(z̃ +

dz̃), τ ′(z̃+dz̃), τ ′′(z̃+dz̃)) = (dz̃+dz̃2, 1, 0), (τ(z̃+dz̃+dz̃2), τ ′(z̃+dz̃+dz̃2), τ ′′(z̃+dz̃+dz̃2) =

(dz̃, 0, 0). One can check that the following τ(z) satisfies these conditions:



τ(z) = 0 if z ≤ z̃ − dz̃2

τ(z) = τ1(z) if z ∈ [z̃ − dz̃2, z̃]

τ(z) = z − z̃ + dz̃2 if z ∈ [z̃, z̃ + dz̃]

τ(z) = τ2(z) if z ∈ [z̃ + dz̃, z̃ + dz̃ + dz̃2]

τ(z) = dz̃ if z ≥ z̃ + dz̃ + dz̃2

43Note, if an income level satisfies FOC(z, n;α) = 0 and SOC(z, n;α) < 0, this does not imply that
the z is an unique global maximum for type (n, α). Rather z could simply be a local maximum for type
(n, α).
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where we define:

τ1(z) = 3dz̃2

(
z − (z̃ − dz̃2)

dz̃2

)5

− 8dz̃2

(
z − (z̃ − dz̃2)

dz̃2

)4

+ 6dz̃2

(
z − (z̃ − dz̃2)

dz̃2

)3

τ2(z) = 9dz̃2

(
(z̃ + dz̃ + dz̃2)− z

dz̃2

)5

−22dz̃2

(
(z̃ + dz̃ + dz̃2)− z

dz̃2

)4

+14dz̃2

(
(z̃ + dz̃ + dz̃2)− z

dz̃2

)3

+dz̃

A.4.1 Proof that τ(z) and τ ′(z) Are Bounded on [z̃ − dz̃2, z̃] and [z̃ − dz̃2, z̃]

It’s immediately clear, that τ1(z) and τ2(z) are bounded by dz̃2. As far as τ ′1(z) and τ ′2(z),

note that:

τ ′1(z) = 15

(
z − (z̃ − dz̃2)

dz̃2

)4

− 32

(
z − (z̃ − dz̃2)

dz̃2

)3

+ 18

(
z − (z̃ − dz̃2)

dz̃2

)2

τ ′2(z) = −45

(
(z̃ + dz̃ + dz̃2)− z

dz̃2

)4

+ 88

(
(z̃ + dz̃ + dz̃2)− z

dz̃2

)3

− 42

(
(z̃ + dz̃ + dz̃2)− z

dz̃2

)2

It’s easily shown that both of these functions are bounded on their stated domains.

A.5 Proof of Proposition 1

We start by plugging our chosen τ(z) into Equation 5 (denoting the set Z+ ≡ (z̃ + dz̃ +
dz̃2,∞) \ {Ki}):44

∑
α∈A

∫ z̃

z̃−dz̃2

[
−Wu(u∗)u∗cτ(z∗) + λ

(
T ′(z∗)

∂z∗

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dH(z∗|α)p(α)+

∑
α∈A

∫ z̃+dz̃

z̃

[
−Wu(u∗)u∗c(z∗ − z̃ + dz̃2)− λ

(
T ′(z∗)

(
Zcz∗,αz

∗

1− T ′(z∗)
+

ηz∗,α

1− T ′(z∗)
(
z∗ − z̃ + dz̃2

))
−
(
z∗ − z̃ + dz̃2

))]
dH(z∗|α)p(α)+

∑
α∈A

∫ z̃+dz̃+dz̃2

z̃+dz̃

[
−Wu(u∗)u∗cτ(z∗) + λ

(
T ′(z∗)

∂z∗

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dH(z∗|α)p(α)+

∑
α∈A

∫
Z+

[
−Wu(u∗)u∗cdz̃ − λ

(
T ′(z∗)

ηz∗,α

1− T ′(z∗)
dz̃ − dz̃

)]
dH(z∗|α)p(α)+

∑
Ki

dz̃λ (1− ω(Ki)) pK(Ki)1(Ki > z̃ + dz̃ + dz̃2) = 0

(15)

We know that Equation 15 must hold for all values of dz̃ (as the derivative of the

government Lagrangian in the direction of any function τ(z) must be 0). We first divide

through by dz̃ everywhere and then take the limit of Equation 15 as dz̃ → 0. Doing so,

we get the following:

44Note, individuals who bunch at kinks can only locate outside the interval [z̃−dz̃2, z̃+dz̃+dz̃2] given
our choice of τ(z).
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−
∑
α∈A

λ
T ′(z̃)

1− T ′(z̃)
z̃Zcz̃,αh(z̃|α)p(α)−

∑
α∈A

∫
(z̃,∞)\{Ki}

ληz∗,α
T ′(z∗)

1− T ′(z∗)
dH(z∗|α)p(α)+

∑
α∈A

∫
(z̃,∞)\{Ki}

(λ−Wu(u∗)u∗c) dH(z∗|α)p(α) +
∑
Ki

λ (1− ω(Ki)) pK(Ki)1(Ki > z̃) = 0

(16)

The first term and third term of Equation 15 go to 0 as the integrals are of order dz̃2

(the integrands are bounded and integrated over an interval of size dz̃2)45; thus dividing

these integrals by dz̃ leaves us with a term that is of order dz̃. Hence, these two terms go

to zero as dz̃ goes to 0. It’s easy to see how the fourth term of Equation 15 goes to the

second and third terms of Equation 16 after dividing by dz̃ and taking the limit as dz̃

goes to 0. Similarly, it’s easy to see how the fifth term of Equation 15 goes to the fourth

term of Equation 16. For the second term of Equation 15 (after dividing through by dz̃),

we use the rectangle approach to approximate the integral as:46

∑
α∈A

[
−Wu(u∗)u∗cdz̃

2 − λ
(
T ′(z̃)

(
Zcz̃

1− T ′(z̃)
+

η

1− T ′(z̃)
dz̃2

)
− dz̃2

)]
dH(z̃|α)p(α)→

−
∑
α∈A

λ
T ′(z̃)

1− T ′(z̃)
z̃ZcdH(z̃|α)p(α) = −

∑
α∈A

λ
T ′(z̃)

1− T ′(z̃)
z̃Zch(z̃|α)p(α)

Finally, denoting Z̄c
z̃ =

∑
α∈A Z

c
z̃,αp(α|z̃) as the average compensated elasticity at

income z̃, η̄z∗ =
∑

α∈A ηz∗,αp(α|z∗) as the average income effect parameter at z∗, ω̄(z∗) =∑
α∈A

Wu(u∗)u∗c
λ

p(α|z∗) as the average social welfare weight at income z∗, switching the

order of the sum and the integral on the second term in Equation 16, and noting that

45As the utility function is clearly bounded in this range, it suffices to show that τ(z) and τ ′(z) are
bounded, which implies that ∂z∗

∂µ |µ=0 is bounded as well. See Appendix A.4.1.
46In order to apply the rectangle approach, it suffices to ensure that the integrand is continuous and

that H(z̃|α) is continuously differentiable at z̃. Given that Equation 15 only holds at non-kink points,
we only consider z̃ where T (z̃) is twice continuously differentiable. Thus, the integrand is continuous by
our assumptions on utility. If n(z̃, α) is on the boundary of support of F (n|α), F ′(n|α) 6= 0, and z̃ is
an interior income chosen in society, then there will be a kink point in the tax schedule at z̃ meaning
Equation 15 does not apply (note, we are ignoring knife-edge cases wherein there’s a z̃ for which the
support of F (n|αi) ends and the support of F (n|αj) begins and these effects perfectly offset so that
the tax schedule is differentiable). Hence, we can restrict attention to cases where n(z̃, α) is in the
interior of the support of F (n|α). In this case, H(z̃|α) is continuously differentiable so long as F (n|α)

is continuously differentiable (which we assume) and ∂n(z;α)
∂z =

(
∂z(n,α)
∂n

)−1
exists and is continuous.

∂z(n,α)
∂n exists as long as the SOC holds strictly, which is true by Lemma 3 as we assume no one has

multiple optima at z̃. Finally, ∂z(n,α)∂n > 0 by Lemma 1 so that ∂n(z;α)
∂z exists; continuity of ∂n(z;α)∂z follows

from our assumptions of twice continuous differentiability on the utility functions and tax schedule at
non-kink points. Hence, H(z̃|α) will be continuously differentiable at all non-kink points of the tax
schedule, so that it is admissible to use the rectangle approach on Equation 15.
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h(z|α)p(α) = p(α|z)h(z), we can rewrite Equation 16 as follows:∫ ∞
z̃

(1− ω̄(z∗)) dH(z∗)− T ′(z̃)

1− T ′(z̃)
z̃Z̄c

z̃h(z̃)−
∫

(z̃,∞)\{Ki}
η̄z∗

T ′(z∗)

1− T ′(z∗)
dH(z∗) = 0

A.6 Proof Equation 8 Holds At Points of Non-Differentiability

Proof. We seek to show Equation 8 (reproduced below) holds even at points of non-

differentiability of the tax schedule.

∂m(α)

∂µ

∣∣∣
µ=0

= −
uc

(
c(z∗−), z

∗−

m
;α
)
τ(z∗−)− uc

(
c(z∗+), z

∗+

m
;α
)
τ(z∗+)

ul
(
c(z∗−), z

∗−

m
;α
)
z∗−

m2 − ul
(
c(z∗+), z

∗+

m
;α
)
z∗+

m2

Recall that m(α) is the individual with multiple optima and that m(α), z∗−(α), and

z∗+(α) are functions of the tax schedule. Hence, we now explicitly write these as func-

tions of µ: m(α, µ), z∗−(α, µ), and z∗+(α, µ), which satisfying the following indifference

relation:

u

(
z∗−(α, µ)− T (z∗−(α, µ))− µτ(z∗−(α, µ)),

z∗−(α, µ)

m(α, µ)
;α

)
= u

(
z∗+(α, µ)− T (z∗+(α, µ))− µτ(z∗+(α, µ)),

z∗+(α, µ)

m(α, µ)
;α

) (17)

WLOG, let us assume that the tax schedule is non-differentiable only at z∗− and not at

z∗+. Denote the right marginal tax rate at z∗− as T ′r and the left marginal tax rate at

z∗− as T ′l. There are a number of cases to consider. First, suppose that for the indifferent

individual m(α, 0):

uc

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
(1− T ′r) + ul

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
z∗−(α, 0)

m(α, 0)2
< 0

(18)

and

uc

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
(1− T ′l) + ul

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
z∗−(α, 0)

m(α, 0)2
> 0

(19)

Note, in this case, for sufficiently small µ, Equations 18 and 19 both still hold, so that
z∗− does not change with µ. In this case we can consider z∗− a constant (as a function
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of µ) and apply the implicit function theorem to Equation 17 to yield:

uc

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
τ(z∗−)− uc

(
c(z∗+),

z∗+

m
;α

)
τ(z∗+)+[

ul

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
z∗−(α, 0)

m(α, 0)2
− ul

(
c(z∗+(α, 0)),

z∗+(α, 0)

m(α, 0)
;α

)
z∗+(α, 0)

m(α, 0)2

]
∂m(α, µ)

∂µ

∣∣∣
µ=0

+[
uc

(
c(z∗+(α, 0)),

z∗+(α, 0)

m(α, 0)
;α

)
(1− T ′(z∗+)) + ul

(
c(z∗+(α, 0)),

z∗+(α, 0)

m(α, 0)
;α

)
z∗+(α, 0)

m(α, 0)2

]
∂z∗+(α, µ)

∂µ

∣∣∣
µ=0

= 0

(20)

Because we have:

uc

(
c(z∗+(α, 0)),

z∗+(α, 0)

m(α, 0)
;α

)
(1−T ′(z∗+))+ul

(
c(z∗+(α, 0)),

z∗+(α, 0)

m(α, 0)
;α

)
z∗+(α, 0)

m(α, 0)2
= 0

we can rearrange Equation 20 to yield Equation 8. Now, suppose instead that:

uc

(
c(z∗−),

z∗−

m
;α

)
(1− T ′r) + ul

(
c(z∗−),

z∗−

m
;α

)
z∗−

m2
= 0 (21)

and

uc

(
c(z∗−),

z∗−

m
;α

)
(1− T ′l) + ul

(
c(z∗−),

z∗−

m
;α

)
z∗−

m2
> 0 (22)

Now, consider perturbing the tax schedule in the direction of a function τ(z) that
induces individual m(α, 0) to remain at income level z∗−(α, 0). In this case, we can apply
the same logic as before, holding z∗− constant as a function of µ to yield Equation 8 as our

expression for ∂m(α)
∂µ

∣∣∣
µ=0

. On the other hand, suppose that perturbing the tax schedule

in the direction of a function τ(z) induces m(α, 0) to move along the tax schedule to the
right. In this case, when we apply the implicit function theorem to Equation 17 we get:

uc

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
τ(z∗−)− uc

(
c(z∗+),

z∗+

m
;α

)
τ(z∗+)+[

ul

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
z∗−(α, 0)

m(α, 0)2
− ul

(
c(z∗+(α, 0)),

z∗+(α, 0)

m(α, 0)
;α

)
z∗+(α, 0)

m(α, 0)2

]
∂m(α, µ)

∂µ

∣∣∣
µ=0

+[
uc

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
(1− T ′r) + ul

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
z∗−(α, 0)

m(α, 0)2

]
∂z∗−(α, µ)

∂µ

∣∣∣
µ=0

+[
uc

(
c(z∗+(α, 0)),

z∗+(α, 0)

m(α, 0)
;α

)
(1− T ′(z∗+)) + ul

(
c(z∗+(α, 0)),

z∗+(α, 0)

m(α, 0)
;α

)
z∗+(α, 0)

m(α, 0)2

]
∂z∗+(α, µ)

∂µ

∣∣∣
µ=0

= 0

(23)

But now, we also have that:

uc

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
(1− T ′r) + ul

(
c(z∗−(α, 0)),

z∗−(α, 0)

m(α, 0)
;α

)
z∗−(α, 0)

m(α, 0)2
= 0

Hence, as before, we can rearrange to yield Equation 8. The logic is identical if instead
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we have:

uc

(
c(z∗−),

z∗−

m
;α

)
(1− T ′r) + ul

(
c(z∗−),

z∗−

m
;α

)
z∗−

m2
< 0

and

uc

(
c(z∗−),

z∗−

m
;α

)
(1− T ′l) + ul

(
c(z∗−),

z∗−

m
;α

)
z∗−

m2
= 0

Moreover, the logic is identical if the tax schedule is instead (or also) non-differentiable at

z∗+. Hence, Equation 8 holds even if the tax schedule is non-differentiable at z∗− and/or

z∗+.

A.7 Proof of Proposition 2

First, we can write the government’s Lagrangian as:47

L =
∑
α∈A

∫ m1(α)

0

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n|α)p(α)+

∑
α∈A

M(α)−1∑
i=1

∫ mi+1(α)

mi(α)

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n|α)p(α)+

∑
α∈A

∫ ∞
mM(α)(α)

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n|α)p(α)

Taking the derivative of the Lagrangian w.r.t. µ and evaluating at µ = 0 we get an

augmented version of Equation 9:

∑
α∈A

∫ ∞
0

[
−Wu(u

∗)u∗cτ(z∗) + λ

(
∂T (z∗)

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dF (n|α)p(α)+

∑
α∈A

M(α)∑
i=1

λ
(
T
(
z∗−i (α)

)
− T

(
z∗+i (α)

)) ∂mi(α)

∂µ

∣∣∣
µ=0

f(mi(α)|α)p(α) = 0

(24)

Now consider the same perturbation as in Subsection 3.2. For the (mi(α), α)′s with

z∗+i (α) > z̃ + dz̃ + dz̃2 and z∗−i (α) < z̃ − dz̃2, the jumping effect is equal to:

λ
(
T
(
z∗−i (α)

)
− T

(
z∗+i (α)

)) u∗+ci (α) dz̃

u∗−li (α)
z∗−i (α)

mi(α)2 − u∗+li (α)
z∗+i (α)

mi(α)2

f(mi(α)|α) ≡ J1i(α)λdz̃

where u∗+ci = uc

(
z∗+i (α)− T

(
z∗+i (α)

)
,
z∗+i (α)

mi(α)
;α
)

etc.

47We’ve used Assumption 2 to ensure that the set {mi(α)} can be totally ordered using the usual
relation <, so that we can write out the Lagrangian as a sum over integrals with endpoints in {mi(α)}.
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On the other hand, for the (mi(α), α)′s with z∗−i (α) > z̃+ dz̃+ dz̃2, the jumping effect is

equal to:

λ
(
T
(
z∗−i (α)

)
− T

(
z∗+i (α)

)) u∗+ci (α) dz̃ − u∗−ci (α) dz̃

u∗−li (α)
z∗−i (α)

mi(α)2 − u∗+li (α)
z∗+i (α)

mi(α)2

f(mi(α)|α) ≡ J2i(α)λdz̃

Dividing Equation 24 by dz̃λ and taking the limit as dz̃ → 0 (following the same ideas

as in Appendix A.5) we get:∫ ∞
z̃

(1− ω̄(z∗)) dH(z∗)− T ′(z̃)

1− T ′(z̃)
z̃Z̄c

z̃h(z̃)−
∫

(z̃,∞)\{Ki}
η̄z∗

T ′(z∗)

1− T ′(z∗)
dH(z∗)

∑
α∈A

M(α)∑
i=1

[
J1i(α)1

(
z∗−i (α) < z̃ < z∗+i (α)

)
+ J2i(α)1

(
z∗−i (α) > z̃

)]
p(α) = 0

A.8 Equivalence of Equation 11 to Mirrlees (1971) With Uni-

dimensional Heterogeneity

We show equivalence of Equation 11 to Mirrlees’s (1971) optimality condition when het-

erogeneity exists only in the productivity dimension. We prove this for the case where

just one individual has multiple optima; the proof is easily extended to the case where

more individuals have multiple optima.48 Suppose some individual with productivity m

has multiple optimal income level z∗− and z∗+. We will show equivalence of Equation

11 at all income levels z̃ for which the tax schedule is differentiable and some individual

n 6= m chooses to locate at z̃.49 We start by considering incomes z̃ > z∗+; we know

Equation 11 simplifies to:50

∫ ∞
z̃

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
dH(z∗)− T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃) = 0 (25)

What does Equation 11 look like for incomes below z∗−? In this case, for incomes at

48Saez (2001) showed that Equation 11 is equivalent to Mirrlees’s (1971) optimality condition if all
individuals have a unique optima.

49Equation 11 only holds at a given z̃ when T (z̃) is differentiable and when no individual has multiple
optima at z̃. Moreover, while Equation 11 can be applied at incomes between z∗− and z∗+, it will not
generate an optimality condition for marginal tax rates between (z∗−, z∗+) as no one locates in this range;
rather it will generate an optimality condition that (T (z∗+) − T (z∗−)) must satisfy (this will become
clearer later on in the proof). Similarly, Mirrlees’s (1971) optimality condition does not specify marginal
tax rates between z∗− and z∗+. Ultimately, this is not overly important because tax rates between z∗−

and z∗+ are not unique: any tax schedule that generates a consumption schedule that lies below type
m’s indifference curve and leaves type m indifferent between z∗− and z∗+ yields the same total welfare.

50We abuse notation and define T ′(z∗)
1−T ′(z∗)ηz∗ ≡ 0 if the tax schedule is non-differentiable at z∗. This

notational simplification means that we do not have to explicitly exclude kink points from the integrals
as in Equation 11.
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which the tax schedule is differentiable, Equation 11 yields:∫ ∞
z̃

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
dH(z∗)− T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃) + J2 = 0 (26)

where

J2 =
(
T (z∗−)− T (z∗+)

) uc

(
c(z∗+), z

∗+

m

)
− uc

(
c(z∗−), z

∗−

m

)
1
m2

(
ul
(
c(z∗−), z

∗−

m

)
z∗− − ul

(
c(z∗+), z

∗+

m

)
z∗+
)f(m)

It will be helpful to rewrite Equation 26 by considering Equation 11 for incomes

between z∗− and z∗+. By the SCP, no individuals will locate between z∗− and z∗+ in the

unidimensional world; thus, marginal tax rate are not uniquely pinned down between z∗−

and z∗+ as any tax schedule that generates a consumption schedule that lies below type

m’s indifference curve and keeps type m indifferent between z∗− and z∗+ leads to the

same total welfare. However, we can nonetheless apply Equation 11 to incomes between

z∗− and z∗+ to get a condition that pins down (T (z∗−)− T (z∗+)):=∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
dH(z∗) + J1 = 0 (27)

where

J1 =
(
T (z∗−)− T (z∗+)

) uc

(
c(z∗+), z

∗+

m

)
1
m2

(
ul
(
c(z∗−), z

∗−

m

)
z∗− − ul

(
c(z∗+), z

∗+

m

)
z∗+
)f(m)

Note, there are no elastic effects of changing tax rates between (z∗−, z∗+) as no one

locates in this range. Hence, Equation 27 does not pin down marginal tax rates between

(z∗−, z∗+); rather, Equation 27 provides a condition that pins down (T (z∗−)− T (z∗+)).

Next we note that:

J2 =
uc

(
c(z∗+), z

∗+

m

)
− uc

(
c(z∗−), z

∗−

m

)
uc
(
c(z∗+), z

∗+

m

) J1

= −
(

1− u∗−c
u∗+c

)∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
dH(z∗)

where u∗+c = uc(z
∗+ − T (z∗+), z∗+/m) and u∗−c = uc(z

∗− − T (z∗−), z∗−/m). We can use

this relationship to rewrite Equation 26 for all incomes z̃ < z∗− for which the tax schedule
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is differentiable:51

∫ z∗−

z̃

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
dH(z∗) +

u∗−c
u∗+c

∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
dH(z∗)

− T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃) = 0

(28)

Thus, in order to show that Equation 11 is identical to Mirrlees’s (1971) optimality

condition at all income levels z̃ for which the tax schedule is differentiable and some

individual n 6= m chooses to locate at z̃, it suffices to show that Equation 25 and Equation

28 are equivalent to Mirrlees’s (1971) optimality condition.

We can combine Equations 25 and 28 by defining the following function Q(z): Q(z) ≡
u∗−c
u∗+c

if z ≥ z∗+, Q(z) ≡ 1 if z ≤ z∗−, and Q(z) ≡ 0 if z∗− < z < z∗+. The optimal tax

schedule must satisfy the following differential equation ∀ z̃ /∈ {z∗−, z∗+} where the tax

schedule is differentiable (recognizing that Equation 29 holds vacuously between z∗− and

z∗+ as h(z̃) = 0 for z̃ ∈ (z∗−, z∗+)):∫ ∞
z̃

Q(z∗)

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
dH(z∗)−Q(z̃)

T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃) = 0 (29)

Changing variables from z∗ to n, denoting the individual who chooses z̃ as ñ:∫ ∞
ñ

Q(n)

[
1− ω(n)− T ′(n)

1− T ′(n)
ηn

]
f(n)dn−Q(ñ)

T ′(ñ)

1− T ′(ñ)
Zc
ñz
∗(ñ)f(ñ)

1

z∗′(ñ)
= 0

(30)

where ω(n) = ω(z∗(n)), Q(n) = Q(z∗(n)), Q(ñ) = Q(z∗(ñ)) = Q(z̃), T ′(n) = T ′(z∗(n))

etc.52 53

Next, following roughly the Appendix to Saez (2001), we define:

K(ñ) = −
∫ ∞
ñ

Q(n)ηn
T ′(n)

1− T ′(n)
f(n)dn

D(ñ) =
ηñ

Zc
ñz
∗(ñ)

z∗′(ñ)

C(ñ) =

∫ ∞
ñ

Q(n)(1− ω(n))f(n)dn

51Again we abuse notation by defining T ′(z∗)
1−T ′(z∗)ηz∗ ≡ 0 if the tax schedule is non-differentiable at z∗.

52We break type m′s indifference and assume they locate at z∗− so that z∗(m) = z∗−.
53At all z∗ where the tax schedule is differentiable we have H(z∗(n)) = F (n) (by Lemma 1), which

implies h(z∗(n))z∗′(n) = f(n).
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We can rewrite Equation 29 as follows:

K ′(ñ) = D(ñ) (K(ñ) + C(ñ))

Following the steps Saez (2001) uses to get to Equation (27) in his Appendix we get:

K(ñ) = −
∫ ∞
ñ

C ′(n) exp

[
−
∫ n

ñ

D(n′)dn′
]
dn− C(ñ)

Differentiating the above equation yields:

K ′(ñ) = −
∫ ∞
ñ

C ′(n)D(ñ) exp

[
−
∫ n

ñ

D(n′)dn′
]
dn

Plugging in the definitions for K ′, C ′, D, rearranging we get:

T ′(ñ)

1− T ′(ñ)

Zc
ñz
∗(ñ)

z∗′(ñ)
f(ñ) =

∫ ∞
ñ

(1− ω(n))
Q(n)

Q(ñ)
exp

[∫ n

ñ

(
−ηn

′z∗′(n′)

Zc
n′z
∗(n′)

)
dn′
]
f(n)dn (31)

Mirrlees’s (1971) first order condition for the optimal tax schedule is:(
1 +

ul(ñ)

ñuc(ñ)

)
ñ2f(ñ)

−ul(ñ)− l(ñ)ull(ñ) + l(ñ)ul(ñ)ucl(ñ)/uc(ñ)
=∫ ∞

ñ

(
1

uc(n)
− W ′ (u(n))

λ

)
exp

[∫ n′

n
− l(n

′)ucl(n
′)

n′uc(n′)
dn′

]
f(n)dn

where l(n) = z∗(n)/n and u(n) = u (z∗(n)− T (z∗(n)) , z∗(n)/n) etc. We now show that

Mirrlees’s first order condition is mathematically equivalent to our Equation 31. Using

the following definition:

SOC(z, n) =
∂

∂z

(
uc

(
z − T (z),

z

n

)
(1− T ′(z)) +

1

n
ul

(
z − T (z),

z

n

))

we can write Zcnz
∗(n)

1−T ′(n)
= −uc(n)

SOC(z∗(n),n)
and 1

z∗′(n)
= −SOC(z∗(n),n)

1
n2 (−ul(n)−l(n)ull(n)+l(n)ul(n)ucl(n)/uc(n))

. More-

over, by n′s FOC we know: T ′(n) =
(

1 + ul(n)
nuc(n)

)
. Multiplying both sides of Mirrlees’s

formula by uc(ñ) and using these identities we get

T ′(ñ)

1− T ′(ñ)

Zc
ñz
∗(ñ)

z∗′(ñ)
f(ñ) =

∫ ∞
ñ

(1− ω(n))
uc(ñ)

uc(n)
exp

[∫ n

ñ

− l(n
′)ucl(n

′)

n′uc(n′)
dn′
]
f(n)dn (32)

Showing equivalence between Equation 31 and Equation 32 only requires showing that
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uc(ñ)
uc(n)

exp
[∫ n

ñ
− l(n′)ucl(n

′)
n′uc(n′)

dn′
]

= Q(n)
Q(ñ)

exp
[∫ n

ñ
− ηn′
Zc
n′

z∗′(n′)
z∗(n′)

dn′
]
. We have:

uc(ñ)

uc(n)

Q(ñ)

Q(n)
exp

[
−
∫ n

ñ

l(n′)ucl(n
′)

n′uc(n′)
dn′
]

= exp

[
log

(
uc(ñ)

uc(n)

Q(ñ)

Q(n)

)
−
∫ n

ñ

l(n′)ucl(n
′)

n′uc(n′)
dn′
]

= exp

[
[log (uc(ñ)Q(ñ))− log (uc(n)Q(n))]−

∫ n

ñ

l(n′)ucl(n
′)

n′uc(n′)
dn′
]

= exp

[∫ n

ñ

−d log (uc(n
′)Q(n′))

dn′
− l(n′)ucl(n

′)

n′uc(n′)
dn′
]

= exp

[∫ n

ñ

−d (uc(n
′)Q(n′))

dn′
1

uc(n′)Q(n′)
− l(n′)ucl(n

′)

n′uc(n′)
dn′
]

= exp

[∫ n

ñ

−duc(n
′)

dn′
1

uc(n′)
− l(n′)ucl(n

′)

n′uc(n′)
dn′
]

= exp

[∫ n

ñ

−
ucc(n

′)(1− T ′(n′)) + 1
n
ucl(n

′)

uc(n′)
z∗′(n′)dn′

]
= exp

[∫ n

ñ

− ηn
Zc
n

z∗′(n′)

z∗(n′)
dn′
]

where the third equality follows as uc(n)Q(n) is is an absolutely continuous function54,

the fifth equality follows as duc(n′)Q(n′)
dn′

= Q(n′)duc(n
′)

dn′
almost everywhere, and the final

equality follows by the definition of the elasticities ηn and Zc
n. Thus, our formula is

equivalent to Mirrlees (1971) even if individuals have multiple optimal income levels.

A.9 Proof that J1i(α) < 0

WLOG, assume that (m,α) is the only individual with multiple optima, and denote his

multiple income levels as z∗− and z∗+ (thus, we have dropped the i subscripts and no

longer express the multiple income levels or the productivity level of this individual as

functions of α). J1(α) is given by:

(
T (z∗−)− T (z∗+)

) u∗+c (α)

u∗−l (α) z∗−

m2 − u∗+l (α) z∗+

m2

f (m|α) ≡ J1(α)

where u∗+c (α) = uc

(
c(z∗+), z

∗+

m
;α
)

and u∗−l (α) = ul

(
c(z∗−), z

∗−

m
;α
)

etc.

We know that u∗+c (α) > 0 and we assume that T (z∗−) − T (z∗+) < 0. Thus, to show

J1(α) < 0, we need to show ul

(
c(z∗−), z

∗−

m
;α
)
z∗−− ul

(
c(z∗+), z

∗+

m
;α
)
z∗+ > 0. Suppose

towards a contradiction that ul

(
c(z∗+), z

∗+

m
;α
)
z∗+ ≥ ul

(
c(z∗−), z

∗−

m
;α
)
z∗−.

54Continuity arises because limn→m− uc(n)Q(n) = u∗−c and limn→m+ uc(n)Q(n) = u∗+c
u∗−c
u∗+c

= u∗−c .

Absolute continuity follows due to our differentiability assumptions on u(·).
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Consider the function ĉ(z;m,α, ū) that implicitly solves u
(
ĉ, z

m
;α
)

= ū where ū =

u
(
c(z∗−), z

∗−

m
;α
)

= u
(
c(z∗+), z

∗+

m
;α
)

. Thus, ĉ(z;m,α, ū) denotes the consumption level

for type (m,α) such that for every income level z, utility remains constant at ū. By

construction ĉ(z∗−) = c(z∗−) and ĉ(z∗+) = c(z∗+) (note, we will omit the arguments

m,α, ū from ĉ(·) for ease of notation).

By the Mean Value Theorem we know that (omitting the α argument from the utility

function):

z∗+ul

(
ĉ(z∗+),

z∗+

m

)
= z∗−ul

(
ĉ(z∗−),

z∗−

m

)
+ (z∗+ − z∗−)

(
∂(zul

(
ĉ(z), zm

)
)

∂z

)∣∣∣
z̃

= z∗−ul

(
ĉ(z∗−),

z∗−

m

)
+ (z∗+ − z∗−)

(
ul +

z

m
ull + zuclĉ

′(z)
) ∣∣∣

ĉ(z̃),z̃

for some z̃ ∈ (z∗−, z∗+). By the fact that u(ĉ(z), z/m) is constant for all z, we know:
∂u(ĉ(z), z

m
)

∂z
= uc

(
ĉ(z), z

m

)
ĉ′(z) + 1

m
ul
(
ĉ(z), z

m

)
= 0. Substituting in ĉ′(z) = − ul(ĉ(z), zm)

muc(ĉ(z), zm)
:

z∗+ul

(
ĉ(z∗+),

z∗+

m

)
= z∗−ul

(
ĉ(z∗−),

z∗−

m

)
+ (z∗+ − z∗−)

(
ul +

z

m
ull −

z

m
ucl
ul
uc

) ∣∣∣
ĉ(z̃),z̃

By our assumption and the fact that ĉ(z∗+) = c(z∗+) etc., we have z∗+ul

(
ĉ(z∗+), z

∗+

m

)
≥

z∗−ul

(
ĉ(z∗−), z

∗−

m

)
. Moreover, we know z∗+ − z∗− > 0. Thus, it must be the case that(

ul + z
m
ull − z

m
ucl

ul
uc

) ∣∣∣
ĉ(z̃),z̃

≥ 0. However, (SCP) yields the following ∀n, c, z:

− 1

n2u2
c

(
−ucul −

z

n
ulluc +

z

n
ulucl

)
< 0

which simplifies to (
ul +

z

n
ull −

z

n

ul
uc
ucl

)
< 0

A contradiction. Thus, z∗+ul

(
c(z∗+), z

∗+

m

)
< z∗−ul

(
c(z∗−), z

∗−

m

)
, meaning J1(α) < 0.

A.10 Proof of Proposition 3

Proof. To start, we assume that the tax schedule is differentiable at both optimal incomes

z∗− and z∗+ (we consider the non-differentiable case below in A.10.1). We begin by

showing that if indifference curves are convex in (c, z) space, then if there exists an

individual with multiple optima, the marginal tax rate must be lower at her highest

optimal income relative to the marginal tax rate at her lowest optimal income: T ′(z∗+) <

T ′(z∗−). Note, as we assume there is only one dimension of heterogeneity throughout this
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proof, we have dropped the α argument.

Suppose there exists an individual with productivity m that has multiple global optima

z∗− and z∗+ under the optimal tax schedule (i.e., jumping behavior exists under the

optimal tax schedule).55 Because we assume the optimal tax schedule is differentiable at

z∗− and z∗+, we know that z∗−, z∗+ must satisfy individual m’s FOC:

(1− T ′(z∗−))u∗−c = − 1

m
u∗−l

and

(1− T ′(z∗+))u∗+c = − 1

m
u∗+l

where u∗−c = uc

(
z∗− − T (z∗−), z

∗−

m

)
, u∗−l = ul

(
z∗− − T (z∗−), z

∗−

m

)
etc.

The indifference curve for individual n with utility ū is the set of points (ĉ(z;n, ū), z)

in (c, z) space where ĉ(z;n, ū) implicitly solves u(ĉ, z/n) = ū. Implicitly differentiating

this last condition w.r.t. z, the slope of this indifference curve at point (ĉ(z;n, ū), z) is

given by
− 1
n
ul(ĉ(z;n,ū), z

n)
uc(ĉ(z;n,ū), z

n)
. Given we assume indifference curves are convex, this amounts

to assuming ∂
∂z

− 1
n
ul(ĉ(z;n,ū), z

n)
uc(ĉ(z;n,ū), z

n)
> 0 ∀ n, ū.

Next, we know that (z∗− − T (z∗−), z∗−) and (z∗+ − T (z∗+), z∗+) lie on the same in-

difference curve for individual m (as they are two points in (c, z) space that give m the

same level of utility). Because z∗− < z∗+, by our convexity assumption, we know that
− 1
m
u∗−l

u∗−c
<
− 1
m
u∗+l

u∗+c
. By individual m’s FOC, this implies 1−T ′(z∗−) < 1−T ′(z∗+) meaning

T ′(z∗+) < T ′(z∗−). Thus, if indifference curves are convex in (c, z) space and there exists

an individual with multiple optima, it must be the case that T ′(z∗+) < T ′(z∗−).

Now, consider perturbing the optimal tax schedule in the direction of the new function

τ(z) 

τ(z) = 0 if z ≤ z̃ − dz̃2

τ(z) = z − z̃ + dz̃2 if z ∈ [z̃, z̃ + dz̃]

τ(z) = dz̃ if z ∈ [z̃ + dz̃ + dz̃2, z∗− + δ1]

τ(z) = dz̃ u
∗−
c

u∗+c
if z ≥ z∗− + δ2

where z̃ < z∗−, and where δ2 > δ1 > 0 and dz̃ > 0 are chosen s.t. z̃ + dz̃ + dz̃2 < z∗−

and δ2 < z∗+ − z∗−. We define τ(z) to change from dz̃ to dz̃ u
∗−
c

u∗+c
in a twice continuously

differentiable way between z∗−+δ1 and z∗−+δ2 yet remain under individual m’s indiffer-

ence curve. Similarly, we define τ(z) to change in a twice continuously differentiable way

between z̃ − dz̃2 and z̃ and between z̃ + dz̃ and z̃ + dz̃ + dz̃2 (see Appendix A.4 for τ(z)

defined between these two intervals). Note, with one dimension of heterogeneity, there

55The proof is easily extended to consider multiple individuals with multiple optima.
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are no individuals that locate between z∗− and z∗+. Most importantly, under this per-

turbation, the jumping effect J2 = 0 because τ(z∗+) = τ(z∗−)u
∗−
c

u∗+c
, thus the numerator in

Equation 8 is 0, hence ∂m
∂µ
|µ=0 = 0 (i.e., the person with multiple optima doesn’t change).

Using this perturbation, we can derive a condition that the optimal tax schedule must

satisfy for z̃ < z∗−:∫ z∗−

z̃

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗ +

u∗−c
u∗+c

∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗

− T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃) = 0

(33)

remembering that no one locates between (z∗−, z∗+).

Now consider the same τ(z) as in the main body of the text. We know that the optimal

tax schedule for z̃ > z∗+ must satisfy:∫ ∞
z̃

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗ − T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃) = 0 (34)

There will be no jumping effects from this perturbation as we assume there is just the

one individual with multiple optima and we are perturbing the tax schedule above his

top income: z̃ > z∗+.

Taking the limit of Equation 33 as z̃ → z∗− from the left, and taking the limit of

Equation 34 as z̃ → z∗+ from the right, we know that the optimal tax schedule must

satisfy the following two equations:

lim
(z̃→z∗−)−

(∫ z∗−

z̃

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗+

u∗−c
u∗+c

∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗ − T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃)

)
= 0

and

lim
(z̃→z∗+)+

(∫ ∞
z̃

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗ − T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃)

)
= 0

We partially evaluate these limits to yield:

u∗−c
u∗+c

∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗− lim

(z̃→z∗−)−

(
T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃)

)
= 0 (35)
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and∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗ − lim

(z̃→z∗+)+

(
T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃)

)
= 0 (36)

Next, we will show that lim(z̃→z∗−)−
T ′(z̃)

1−T ′(z̃)
1

uc(z̃)
Zc
z̃ z̃h(z̃) < lim(z̃→z∗−)−

T ′(z̃)
1−T ′(z̃)

1
uc(z̃)

Zc
z̃ z̃h(z̃).

First, we know the following is true for any individual with unique optimal income z∗

(hence holds for any particular optimal income level z̃):

Zc
z∗z
∗h(z∗) = Zc

z∗z
∗f(n(z∗))

∂n(z∗)

∂z∗

Implicitly differentiating the individual’s FOC to obtain ∂n(z∗)
∂z∗

and plugging into the

above equation, we get:

Zc
z∗z
∗h(z∗) =

−(1− T ′(z∗))u∗cf(n(z∗))
z∗

n2u∗cl(1− T ′(z∗)) + 1
n2u∗l + z∗

n3u∗ll

Noting that u∗c(1− T ′(z∗)) = − 1
n
u∗l we get:56

Zc
z∗z
∗h(z∗)

(1− T ′(z∗))u∗c
=

f(n(z∗))n(z∗)2

z∗

n(z∗)
u∗cl

u∗l
u∗c
− u∗l − z∗

n(z∗)
u∗ll

(37)

By continuity of the density function f(n) (which we assumed at the beginning of

the paper), we get lim(z∗→z∗−)− f(n(z∗)) = f(m) = lim(z∗→z∗+)+ f(n(z∗)). Moreover, by

continuity of the utility function (and it’s derivatives) as well as T ′(·), we can take the

limit through the utility functions and the tax schedule to yield:

lim
(z̃→z∗−)−

T ′(z̃)

1− T ′(z̃)

1

uc(z̃)
Zc
z̃ z̃h(z̃) =

T ′(z∗−)f(m)m2

z∗−

m
u∗−cl

u∗−l
u∗−c
− u∗−l − z∗−

m
u∗−ll

and

lim
(z̃→z∗+)+

T ′(z̃)

1− T ′(z̃)

1

uc(z̃)
Zc
z̃ z̃h(z̃) =

T ′(z∗+)f(m)m2

z∗+

m
u∗+cl

u∗+l
u∗+c
− u∗+l − z∗+

m
u∗+ll

If z
n
ucl

ul
uc
− ul− z

n
ull is increasing in z along each n′s indifference curve, then because z∗+

and z∗− are both on the same indifference curve for individual m, we know (also using

56Note, the compensated elasticity need not be well-defined at z∗− and z∗+ because the SOC may only

hold weakly for multiple-optima individuals (see Lemma A.3). However, lim(z̃→z∗−)−
T ′(z̃)

1−T ′(z̃)
1

uc(z̃)
Zcz̃ z̃h(z̃)

and lim(z̃→z∗−)−
T ′(z̃)

1−T ′(z̃)
1

uc(z̃)
Zcz̃ z̃h(z̃) are nonetheless well-defined as the RHS of Equation 37 is always

well-defined by Appendix A.3.1 where we show z
nucl

ul
uc
− ul − z

null > 0.

51



z
n
ucl

ul
uc
− ul − z

n
ull > 0 by Appendix A.3.1):

f(m)m2

z∗−

m
u∗−cl

u∗−l
u∗−c
− u∗−l − z∗−

m
u∗−ll

>
f(m)m2

z∗+

m
u∗+cl

u∗+l
u∗+c
− u∗+l − z∗+

m
u∗+ll

And, given that 0 ≤ T ′(z∗+) < T ′(z∗−) we get:57

lim
(z̃→z∗−)−

T ′(z̃)

1− T ′(z̃)

1

uc(z̃)
Zc
z̃ z̃h(z̃) > lim

(z̃→z∗+)+

T ′(z̃)

1− T ′(z̃)

1

uc(z̃)
Zc
z̃ z̃h(z̃)

which gives:

lim
(z̃→z∗−)−

T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃) >

u∗−c
u∗+c

lim
(z̃→z∗+)+

T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃)

noting that we have passed the limit through the 1
uc(z̃)

term, which is acceptable again

by continuity.

Finally, by the above inequality and Equation 35, we have that:

u∗−c
u∗+c

∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗ − u∗−c

u∗+c
lim

(z̃→z∗+)+

(
T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃)

)
>

u∗−c
u∗+c

∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗ − lim

(z̃→z∗−)−

(
T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃)

)
= 0

Dividing through by u∗−c
u∗+c

we get that Equation 36 cannot be satisfied:

∫ ∞
z∗+

[
1− ω(z∗)− T ′(z∗)

1− T ′(z∗)
ηz∗

]
h(z∗)dz∗ − lim

(z̃→z∗+)+

(
T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃)

)
> 0

Thus, if there exists an individual with multiple optimal incomes, it must be locally

optimal to increase marginal tax rates at z∗+ as long as tax rates are differentiable at z∗−

and z∗+.

A.10.1 Proof of Proposition 3 when the tax schedule is non-differentiable

To complete the proof of Proposition 3, suppose that the tax schedule is not differentiable

at z∗− and z∗+ (if only one of T (z∗−) or T (z∗+) is non-differentiable the proof is essentially

unchanged). First, note that marginal tax rates just above z∗− must be greater than

marginal tax rates just below z∗−. Similarly, marginal tax rates just above z∗+ must be

greater than marginal tax rates just below z∗+. In other words, the two kink points must

57The fact that marginal tax rates are weakly positive follows from Proposition 3 in Mirrlees (1971).
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be concave kink points in (c, z) space, otherwise our multiple optima individual would

not find either z∗− or z∗+ optimal (this is clear from an indifference curve diagram).

Note that while T (z∗−) and T (z∗+) are defined in the limit by Equation 11, marginal

tax rates between z∗− and z∗+ are not defined by Equation 11 because no individuals

locate between these income levels. Any tax schedule that connects T (z∗−) and T (z∗+) in

between z∗− and z∗+ that lies below type m’s indifference curve (so that type m does not

strictly prefer any of these income levels) yields the same total welfare. Hence, it suffices

to show that we can find a welfare improving perturbation starting from a tax schedule

such that type m is right indifferent at z∗− and left indifferent at z∗+ as marginal tax

rates are not pinned down uniquely between z∗− and z∗+ (this therefore shows that any

tax schedule with two optimal incomes, one or more of which is a kink point, cannot be

optimal). Thus, let T ′r(z∗−) and T ′l(z∗+) satisfy the following two conditions:

(1− T ′r(z∗−))u∗−c = − 1

m
u∗−l

and

(1− T ′l(z∗+))u∗+c = − 1

m
u∗+l

where T ′r(z∗−) denotes the right derivative of the tax schedule at z∗−, T ′l(z∗+) denotes

the left derivative of the tax schedule at z∗+, and u∗−c = uc

(
z∗− − T (z∗−), z

∗−

m

)
etc.58

Now, consider perturbing the optimal tax schedule in the direction of a new function τ(z)

so that the tax function is T (z) + µτ(z):

τ(z) = 0 if z ≤ z∗−

τ(z) = (z∗− − z) if z ∈ [z∗−, z∗− + δ1]

τ(z) = (z − z∗− − 2δ1) if z ∈ [z∗− + δ1, z
∗− + 2δ1]

τ(z) = 0 if z ∈ [z∗− + 2δ1, z
∗+ − 2δ2]

τ(z) = γ(z∗+ − z − 2δ2) if z ∈ [z∗+ − 2δ2, z
∗+ − δ2]

τ(z) = γ(z − z∗+) if z ∈ [z∗+ − δ2, z
∗+]

τ(z) = 0 if z ≥ z∗+

We are lowering marginal tax rates by a small amount just after the kink point at z∗− and

raising marginal tax rates just before the second kink point at z∗+. Figure 9 illustrates

the perturbation in blue dashed lines:

58We can, WLOG, consider a tax schedule with T ′′r(z∗−) and T ′′l(z∗+) sufficiently large, so that the
SOC is strictly satisfied. Given indifference curves are convex, it is possible to have large T ′′r(z∗−) and
T ′′l(z∗+) and still have a tax function that lies below the indifference curve of type m.
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Figure 9: Perturbed tax schedule when there are kink points at z∗−, z∗+

where δ1, δ2 are chosen so that z∗− + 2δ1 < z∗+ − 2δ2. We assume µ is sufficiently small

so that there is no bunching at the two new kinks: z∗− + δ1 and z∗+ − δ2 (we can do

this because no one locates between (z∗−, z∗+) under T ; so while a few people from the

original kinks at z∗− and/or z∗+ will “spread” out from this perturbation into the region

(z∗−, z∗+), the extent of this “spreading” goes to 0 with µ). Moreover, we choose γ so

that the individual with multiple optima isn’t changing with the perturbation (this will

become clearer later on in the proof):

γ =

√√√√√ Zc
z∗−

z∗−

1−T ′r(z∗−)

Zc
z∗+

z∗+

1−T ′l(z∗+)

uc(z∗−)

uc(z∗+)

Now let us consider the effects of this perturbation. First, we will show that the

first-order effect on the government’s Lagrangian of perturbing the tax schedule in the

direction of τ(z) will be 0 (i.e., ∂L/∂µ|µ=0 = 0). However, we will then show that the

second-order effect of perturbing the tax schedule in the direction of τ(z) will be positive

(i.e., ∂2L/∂µ2|µ=0 > 0), thus implying we were not at the optimal schedule. In order

to derive the second variation of the tax perturbation in the direction of τ(z), we will

need to write the effects of this perturbation (i.e., the mechanical, elastic, and jumping

effects) in a more involved manner than in the text. In particular, we will write these

effects as functions of µ so that we can then differentiate them w.r.t. µ (as opposed to

simply evaluating the Gateaux derivatives at µ = 0 as in the text). We now write each of

these effects out, starting with the elastic effect. The elastic effect from this perturbation

captures that individuals who initially bunch at the kinks now “spread out”: individuals

at z∗− spread to the right and individuals at z∗+ spread to the left. The impact that
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each spreading individual has on the Lagrangian is equal to λ∂T (z(n))
∂µ

. The next question

is how many individuals spread out from the original kinks? We need to determine how

the individual whose FOC is satisfied under the right marginal tax rate at z∗− changes

with µ; let us denote this individual as a function of µ by nr(µ). Then, we can write the

elastic effect of this perturbation as λ
∫ m
nr

∂T (z(n))
∂µ

f(n)dn. We can determine ∂nr

∂µ
using the

implicit function theorem and the FOC for type nr(µ):59

uc

(
z∗− − T (z∗−)− µτ(z∗−),

z∗−

nr

)(
1− T ′r(z∗−)− µτ ′r(z∗−)

)
+

1

nr
ul

(
z∗− − T (z∗−)− µτ(z∗−),

z∗−

nr

)
= 0

(38)

Noting nr(0) = m and ∂nr

∂µ
|µ=0 = m2 u∗−c τ ′r(z∗−)

z∗−
m

u∗−cl
u∗−
l

u∗−c
−u∗−l −

z∗−
m

u∗−ll

< 0 (as τ ′r(z∗−) = −1 and

the denominator is positive by Appendix A.3.1). An analogous reasoning works at the

second kink z∗+, defining nl(µ) as the individual whose FOC is satisfied under the left

marginal tax rate z∗+ with ∂nl

∂µ
|µ=0 = m2 u∗+c τ ′l(z∗+)

z∗+
m

u∗+cl
u∗+
l

u∗+c
−u∗+l −

z∗+
m

u∗+ll

> 0 (as τ ′l(z∗+) = γ > 0

and the denominator is positive, again by Appendix A.3.1). So the elastic effect is:

λ

∫ m

nr

∂T (z(n))

∂µ
f(n)dn+ λ

∫ nl

m

∂T (z(n))

∂µ
f(n)dn

= λ

∫ m

nr
T ′r(z(n))

∂z(n)

∂µ
f(n)dn+ λ

∫ nl

m

T ′l(z(n))
∂z(n)

∂µ
f(n)dn

There is also a mechanical effect. Recall that the mechanical effect of the tax schedule
holds behavioral responses constant (i.e., holds z(n) constant). Also, everyone outside of
the range [z∗−, z∗+] is unaffected by the perturbation:

∫ m

nr

∂ [W (u(n)) + λµτ(z(n))]

∂µ

∣∣∣
z(n)

f(n)dn+

∫ nl

m

∂ [W (u(n)) + λµτ(z(n))]

∂µ

∣∣∣
z(n)

f(n)dn =∫ m

nr
[Wu(u(n))uc(n)τ(z(n)) + λτ(z(n))] f(n)dn+

∫ nl

m

[Wu(u(n))uc(n)τ(z(n)) + λτ(z(n))] f(n)dn

where u(n) is shorthand notation for u
(
z(n)− T (z(n))− µτ (z(n)) , z(n)

n

)
.

Finally, there is a jumping effect induced by this perturbation given by:

−λ[T
(
z∗−(m(µ), µ)

)
−T

(
z∗+(m(µ), µ)

)
]×

u∗−c (µ)τ (z∗−(m(µ), µ))− u∗+c (µ)τ (z∗+(m(µ), µ))

u∗−l (µ) z
∗−(m(µ),µ)
m(µ)2 − u∗+l (µ) z

∗+(m(µ),µ)
m(µ)2

f (m(µ))

59Note z∗− is not a function of µ as nr(µ) is defined as the person who is right indifferent at z∗−.
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where u∗−c (µ) = uc

(
z∗− (m(µ), µ)− T (z∗−(m(µ), µ))− µτ (z∗−(m(µ), µ)) , z

∗−(m(µ),µ)
m(µ)

)
etc.;

m(µ) captures the productivity level of the individual with multiple optima under the

perturbed scheduled while (z∗−(m(µ), µ), z∗+(m(µ), µ)) capture his lower and upper opti-

mal incomes under the perturbed schedule. Note, it is important to differentiate between

m and m(µ): m is the productivity level of the individual with multiple optima un-

der the non-perturbed tax schedule: m = m(µ)|µ=0. Similarly, (z∗−, z∗+) are the lower

and upper optimal income levels chosen by m under the non-perturbed tax schedule:

z∗− = z∗−(m(µ), µ)|µ=0 and z∗+ = z∗+(m(µ), µ)|µ=0.

Because τ(z∗−) = τ(z∗+) = 0, both the jumping effect and the mechanical effect of

this perturbation are 0 when evaluated at µ = 0. Moreover, the elastic effect is also 0

when evaluated µ = 0 (as the upper and lower limits of integration in the two integrals

in the elastic effect are identical in the limit as µ → 0). Thus, the three effects of the

perturbation are all 0. However, we know that for a tax schedule to be a maximal schedule,

the second variation must be negative (if it’s positive, this means that the tax schedule

is actually a locally minimal tax schedule). Taking the derivative of the elastic effect

w.r.t. µ and evaluating at µ = 0 yields, recognizing that
(
∂z(n)
∂µ

∣∣
n=nr

) ∣∣
µ=0

=
Zc
z∗−

z∗−

1−T ′r(z∗−)

and
(
∂z(n)
∂µ

∣∣
n=nl

) ∣∣
µ=0

= −γ Zc
z∗+

z∗+

1−T ′l(z∗+)
:60

−λ∂n
r

∂µ

∣∣
µ=0

T ′r(z∗−)
Zc
z∗−z

∗−

(1− T ′r(z∗−))
f(m)− λ∂n

l

∂µ

∣∣
µ=0

T ′l(z∗+)γ
Zc
z∗+z

∗+

(1− T ′l(z∗+))
f(m)

Note, when differentiating the elastic effect w.r.t. µ and evaluating at µ = 0, we can

ignore the derivatives of the two integrands w.r.t. µ as the intervals over which they are

integrated → 0 as µ → 0. The derivative of the mechanical effect w.r.t. µ evaluated at

µ = 0 is 0 given that (τ(z(n))|n=nr) |µ=0 = τ(z∗−) = 0 and (τ(z(n))|n=nl) |µ=0 = τ(z∗+) =

0. And the derivative of the jumping effect evaluated at µ = 0 is:61

−λ[T
(
z∗−
)
− T

(
z∗+
)
]×

u∗−c τ ′r(z∗−)∂z
∗−(m(µ),µ)

∂µ

∣∣
µ=0
− u∗+c τ ′l(z∗+)∂z

∗+(m(µ),µ)
∂µ

∣∣
µ=0

u∗−l
z∗−

m2 − u∗+l z∗+

m2

where u∗−c = uc

(
z∗− − T (z∗−), z

∗−

m

)
etc. Note, however, that we have chosen τ(z)

60These formulas are derived, for example, by substituting in n = nr(µ) into the expression for ∂z(n)
∂µ

in Equation 2, and then evaluating at µ = 0.
61Note, while m(µ), z∗−(m(µ)µ) and z∗+(m(µ)µ) are all functions of µ, the derivatives of these terms

are all multiplied by τ(z∗−) = τ(z∗+) = 0. Moreover, the derivative of τ (z∗−(m(µ), µ)) with respect

to µ (at µ = 0) is τ ′r(z∗−)∂z
∗−(m(µ),µ)

∂µ |µ=0 because the income for which an individual is indifferent,

z∗−(m(µ), µ), is increasing with µ. By similar logic, the derivative of τ (z∗−(m(µ), µ)) with respect to µ

(at µ = 0) is τ ′l(z∗+)∂z
∗+(m(µ),µ)

∂µ |µ=0.
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such that ∂z∗−(m(µ),µ)
∂µ

∣∣
µ=0

=
Zc
z∗−

z∗−

1−T ′r(z∗−)
and ∂z∗+(m(µ),µ)

∂µ

∣∣
µ=0

= − Zc
z∗+

z∗+

1−T ′l(z∗+)
γ.62 Given that

τ ′r(z∗−) = −1 and τ ′l(z∗+) = γ:

u∗−c τ ′r(z∗−)
∂z∗−(m(µ), µ)

∂µ

∣∣
µ=0
− u∗+c τ ′l(z∗+)

∂z∗+(m(µ), µ)

∂µ

∣∣
µ=0

=

− u∗−c
Zc
z∗−z

∗−

1− T ′r(z∗−)
+ u∗+c γ2 Zc

z∗+z
∗+

1− T ′l(z∗+)
= 0

where the last equality follows given our definition of γ. Thus, the derivative of the

jumping effect w.r.t. µ evaluated at µ = 0 is also 0. Thus, for the second variation in

the direction of τ(z) to be negative we require the derivative of the elasticity effect to be

negative:

−λ∂n
r

∂µ

∣∣
µ=0

T ′r(z∗−)
Zc
z∗−z

∗−

1− T ′r(z∗−)
f(m)− λ∂n

l

∂µ

∣∣
µ=0

T ′l(z∗+)γ
Zc
z∗+z

∗+

1− T ′l(z∗+)
f(m) < 0

We can plug in the definition of ∂nr

∂µ
|µ=0 and ∂nl

∂µ
|µ=0 (and divide through by m2) to yield:

− λ u∗−c τ ′r(z∗−)

z∗−

m
u∗−cl

u∗−l
u∗−c
− u∗−l − z∗−

m
u∗−ll

T ′r(z∗−)
Zc
z∗−z

∗−

1− T ′r(z∗−)
f(m)−

λ
u∗+c τ ′l(z∗+)

z∗+

m
u∗+cl

u∗+l
u∗+c
− u∗+l − z∗+

m
u∗+ll

T ′l(z∗+)γ
Zc
z∗+z

∗+

1− T ′l(z∗+)
f(m) < 0

Noting that λ is the positive Lagrange multiplier on the budget constraint, τ ′r(z∗−) = −1,

and τ ′l(z∗+) = γ:

u∗−c
z∗−

m
u∗−cl

u∗−l
u∗−c
− u∗−l − z∗−

m
u∗−ll

T ′r(z∗−)
Zc
z∗−z

∗−

1− T ′r(z∗−)
f(m)−

u∗+c
z∗+

m
u∗+cl

u∗+l
u∗+c
− u∗+l − z∗+

m
u∗+ll

T ′l(z∗+)γ2 Zc
z∗+z

∗+

1− T ′l(z∗+)
f(m) < 0

Substituting in our definition of γ and dividing through by u∗−c
Zc
z∗−

z∗−

1−T ′r(z∗−)
we get:

T ′r(z∗−)f(m)

z∗−

m
u∗−cl

u∗−l
u∗−c
− u∗−l − z∗−

m
u∗−ll

− T ′l(z∗+)f(m)

z∗+

m
u∗+cl

u∗+l
u∗+c
− u∗+l − z∗+

m
u∗+ll

< 0 (39)

62Note, ∂m(µ)
∂µ |µ=0 = 0 as τ(z∗−) = τ(z∗+). Hence ∂z∗−(m(µ),µ)

∂µ |µ=0 =
(
∂z∗−(m(µ),µ)

∂µ |m(µ)

)
|µ=0.
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But we showed previously that:

T ′r(z∗−)f(m)

z∗−

m
u∗−cl

u∗−l
u∗−c
− u∗−l − z∗−

m
u∗−ll

− T ′l(z∗+)f(m)

z∗+

m
u∗+cl

u∗+l
u∗+c
− u∗+l − z∗+

m
u∗+ll

> 0

given our assumptions on convexity of indifference curves and z
n
ucl

ul
uc
− ul − z

n
ull is in-

creasing in z along each n’s indifference curve. Hence, the second variation must actually

be strictly positive. Thus, we know that our tax schedule is a local minimizer of welfare;

hence, it cannot ever be locally optimal to have an individual with two optimal incomes

at a kink point. Hence, with one dimension of heterogeneity, it can never be optimal to

have an individual with multiple optimal incomes.

A.11 Proof to Corollary 2

Proof. First, we will show that those with the same x = nα
1

1+k will pick the same optimal

income level for any tax schedule:

z∗(n, α) = argmax
z

αv(z − T (z))−
(
z
n

)1+k

1 + k

= argmax
z

v(z − T (z))−

(
z

nα
1

1+k

)1+k

1 + k

= argmax
z

v(z − T (z))−
(
z
x

)1+k

1 + k
= z∗(x)

Thus, z∗(n, α) = z∗(x), i.e., those with the same x choose the same optimal income. We

will now show that the government problem collapses to a one-dimension problem. The

government problem is given by:

max
T (z)

∫
A

∫
N

W

αv(c∗(n, α))−

(
z∗(n,α)

n

)1+k

1 + k
;n, α

 f(n|α)dndF (α)

s.t.

∫
A

∫
N

c∗(n, α)f(n|α)dndF (α) + E ≤
∫
A

∫
N

z∗(n, α)f(n|α)dndF (α)

where c∗(n, α) = z∗(n, α) − T (z∗(n, α)). Because x is increasing in n, we can do the
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following change of variables:

max
T (z)

∫
A

∫
X

W

αv(c∗(x))−
α
(
z∗(x)
x

)1+k

1 + k
;n(x, α), α

 g(x|α)dxdF (α)

s.t.

∫
A

∫
X

c∗(x)g(x|α)dxdF (α) + E ≤
∫
A

∫
X

z∗(x)g(x|α)dxdF (α)

where g(x|α) = f(n(x, α)|α)∂n(x,α)
∂x

= f(n(x, α)|α)α
−1
1+k . Denoting

W̃ (u∗(x);x) =
∫
A
W (αu∗(x);n(x, α), α)dF (α|x) (where u∗(x) = v(c∗(x))−

(
z∗(x)
x

)1+k

1+k
) and

switching the order of integration we get:

max
T (z)

∫
X

W̃

v(c∗(x))−

(
z∗(x)
x

)1+k

1 + k
;x

 g(x)dx

s.t.

∫
X

c∗(x)g(x)dx+ E ≤
∫
X

z∗(x)g(x)dx

Thus, the government’s problem collapses to a one-dimension problem with new social

welfare function W̃ (u;x). Note, that because we assume f(n) is continuous, g(x) is also

continuous (the change of variables above shows this). Therefore, we can apply Corollary

1.

A.12 Proof of Proposition 4

Proof. Denote the two utility functions: u
(
c, z

n
;α1

)
= u(1)

(
c, z

n

)
and u

(
c, z

n
;α2

)
=

u(2)
(
c, z

n

)
. Let p denote the proportion of individuals who are type 1. To start with,

consider p = 0, so that we have unidimensional heterogeneity. Define T0 as the (assumed

unique) optimal tax schedule when p = 0. To prove Proposition 4, we will proceed as

follows: first, we will show that when the proportion of type 1 individuals is p, the op-

timal tax schedule, Tp, tends to T0 as p tends to 0. This will imply that when p is very

small but strictly positive, the optimal tax schedule Tp ≈ T0. Second, we will show that

under T0, we can find a u(1) with sufficiently flat indifference curves so that there exists

a type 1 individual with multiple optimal income levels under T0. Finally, using the fact

that Tp ≈ T0 for very small but positive p, we will note that we can construct an example

where both types are present and there exists a type 1 individual with multiple optimal

incomes.

First, we show that if we allow p percent of individuals to be type 1, Tp → T0 as
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p → 0, where Tp denotes the optimal tax schedule when p percent of individuals are

type 1. Suppose not, so that Tp → S 6= T0. Denote total welfare of type 2 under T0 as

U (2),T0 and total welfare of type 1 under T0 as U (1),T0 . Denote total welfare under S for

the two types as U (1),S and U (2),S. Note that U (2),S < U (2),T0 as T0 is the unique welfare

maximizing tax schedule for type 2 individuals. For very small p, Tp is arbitrarily close

to S, so that total utility (which is continuous in the tax schedule) is arbitrarily close to

to pU (1),S + (1− p)U (2),S. But for small enough p we know that pU (1),S + (1− p)U (2),S <

pU (1),T0 + (1 − p)U (2),T0 as U (2),S < U (2),T0 . Hence, for all sufficiently small p, T0 yields

higher utility than S, which is a contradiction. Hence Tp → T0 as p→ 0.

Now, let’s specify the functional forms for utility: u(i) = c − ( zn)
1+αi

1+αi
for i = {1, 2},

where we choose 0 < α1 < α2 so that type 1 has flatter indifference curves. It is easy

to check that these utility functions satisfy the conditions specified in Proposition 3, and

that they satisfy the (SCP). Next we select the productivity support for type 2 to satisfy

n(2) > 0 and n(2) < 1 where n(i) and n(i) denote the minimum and maximum productivity

values that type i can have, respectively. Next, we choose the productivity support for

type 1 such that n(1) =

(
n(2)

α2+1
α2

) α1
α1+1

and n(1) =

(
n(2)

α2+1
α2

) α1
α1+1

. This productivity

range for type 1 ensures that both type 1 and type 2 will locate at the minimum and

maximum incomes chosen in society.63 Moreover, because n(2) > 0 and n(2) < 1, we also

know that n(1) > 0 and n(1) < 1.

Now, consider the optimal tax schedule when p = 0, T0, and consider a type 2 indi-

vidual (ñ(2), α2) with unique global optimal income z∗(ñ(2), α2) ≡ z̃, for which T0(z) is

twice continuously differentiable at z̃ and T ′′0 (z̃) < 0.64 65 Note that z∗(n,αi)
n

< 1 whenever

T ′0(z∗(n, αi)) exists. This is because whenever the tax schedule is differentiable, z∗(n, αi)

solves (by agent’s FOC):
z∗

n
= n

1
αi (1− T ′0(z∗))

1
αi

and because 0 < n < 1, T ′0 ∈ [0, 1), αi > 0 for i ∈ 1, 2, implying that 0 < z∗(n, αi)/n < 1

(note, Mirrlees (1971) showed T ′0 ∈ [0, 1) with one dimension of heterogeneity). Thus,

0 < z̃/ñ(2) < 1.

Next, we know that 1 − T ′(z̃) −
(

z̃
ñ(2)

)α2 1
ñ(2) = 0 (as z̃ satisfies (ñ(2), α2)′s FOC). We

also know that
(

z̃
ñ(2)

)α2 <
(

z̃
ñ(2)

)α1 as α2 > α1 > 0 and
(

z̃
ñ(2)

)
< 1. Thus, we know that

1− T ′(z̃)−
(

z̃
ñ(2)

)α1 1
ñ(2) < 0, i.e., z∗(ñ(2), α1) 6= z̃. In fact, because 1− T ′(z̃)−

(
z̃
n

)α1 1
n

is

increasing in n, we know that ñ(1) > ñ(2) where ñ(1) is the productivity level for type 1

63We have used the fact that marginal rates are 0 at the bottom and the top of the income distribution
by Propositions 6 and 7.

64Each type 2 individual will have a unique global optimal under T0 by Proposition 3.
65With a bounded skill distribution, all optimal tax schedules will have some decreasing component

as optimal marginal tax rates are 0 at the top and bottom of the income distribution, see Propositions
6 and 7.
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that solves: 1− T ′(z̃)−
(

z̃
ñ(1)

)α1 1
ñ(1) = 0.

Next, consider the SOC of type (ñ(2), α2) at z̃. Given z̃ is unique for type (ñ(2), α2), then

by agent maximization, SOC(z̃; ñ(2), α2) < 0:66

SOC(z̃; ñ(2), α2) = − α2

(ñ(2))
2

(
z̃

ñ(2)

)α2−1

− T ′′0 (z̃) < 0

Now consider the SOC for the individual (ñ(1), α1) who locates at z̃:

SOC(z̃; ñ(1), α1) = − α1

(ñ(1))
2

(
z̃

ñ(1)

)α1−1

− T ′′0 (z̃)

Because ñ(1) > ñ(2) we know that

SOC(z̃; ñ(1), α1) > − α1

(ñ(2))
2

(
z̃

ñ(2)

)α1−1

− T ′′0 (z̃)

Because−T ′′0 (z̃) > 0 we can find a small but strictly positive α1 such that SOC(z̃; ñ(1), α1) >

0, e.g., any α1 < −T ′′0 (z̃)ñ(2)z̃ will make the SOC positive.67 But if the SOC is positive,

this implies that this is, in fact, a local minimum for (ñ(1), α1), so that the type 1 indi-

vidual whose FOC is satisfied at z̃ (this individual is unique by SCP) does not locate at

z̃. Hence, no type 1 individual locates at z̃.

Finally, for sufficiently small p > 0, we know that T
′′
p (z̃) ≈ T

′′
0 (z̃), so that the SOC

is still positive for this type 1 individual whose FOC is satisfied at z̃; thus no type 1

individual locates at z̃. Moreover, by our choice of the support for type 1 individuals, we

know that some type 1 individual chooses to locate at the minimum income level chosen

in society and another type 1 individual chooses to locate at the maximum income level

chosen in society for any p.68 Putting these facts together implies that there must be a

jump discontinuity in the optimal income function z∗(n, α1), which in turn implies there

must be a type 1 individual with two global optimal income levels. Hence, for sufficiently

small p, we know that there must exist an individual with multiple optimal incomes.

66See Lemma 3.
67If α1 < −T ′′0 (z̃)ñ(2)z̃ we get SOC(z̃; ñ(1), α1) > T ′′0 (z̃)

(
z̃
ñ(2)

)α1 − T ′′0 (z̃). Because z̃
ñ(2) < 1 and

−T ′′0 (z̃) > 0, we get SOC(z̃; ñ(1), α1) > 0.
68Propositions 6 and 7 show that bottom and top tax rates are 0 for any p.
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A.13 Proof of Proposition 5

Proof. Suppose there are two types: α1 and α2; the proof is easily extended to more

types. Suppose there exists an individual of type α1 that has multiple optimal incomes,

z∗−(α1), z∗+(α1). We know Equation 11 holds ∀ z in some neighborhoods around z∗−(α1)

and z∗+(α1) by Assumption 3 and the fact that T (z) is twice continuously differentiable

at all but a finite set of points. Thus, we can take the limit of Equation 11 as z̃ → z∗−

from the left and subtract off the limit of Equation 11 as z̃ → z∗− from the right to get:

lim
(z̃→z∗−)+

(
− T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃) + J1(α1)p(α1)

)
= lim

(z̃→z∗−)−

(
− T ′(z̃)

1− T ′(z̃)
Zc
z̃ z̃h(z̃) + J2(α1)p(α1)

)

Let us suppose that the tax schedule is differentiable at z∗−. We can simplify this equation

(using the fact that the elasticity effect for type α2 is continuous at z∗− because we assume

the tax schedule is differentiable at z∗−):

J1(α1)p(α1)− J2(α1)p(α1) = lim
(z̃→z∗−)−

(
− T ′(z̃)

1− T ′(z̃)
Zc
z̃,α1

z̃h(z̃|α1)p(α1)

)

as lim(z̃→z∗−)−

(
− T ′(z̃)

1−T ′(z̃)Z
c
z̃ z̃h(z̃|α2)p(α2)

)
= lim(z̃→z∗−)+

(
− T ′(z̃)

1−T ′(z̃)Z
c
z̃ z̃h(z̃|α2)p(α2)

)
given

continuity in the elasticity effect for type α2, and lim(z̃→z∗−)+

(
− T ′(z̃)

1−T ′(z̃)Z
c
z̃ z̃h(z̃|α1)

)
p(α1) =

0 given no α1 type locates just to the right of z∗−.

Substituting in the expressions for J1, J2, Z
c, and using the following identity that holds

at all z̃ for which the tax schedule is twice differentiable:

h(z̃|α) = f(n(z̃, α)|α)
∂n(z∗, α)

∂z∗

∣∣∣
z∗=z̃

= f(n(z̃, α)|α)

(
u∗cc(1− T ′(z∗))2 + 2

n(z∗,α)
u∗cl(1− T ′(z∗)) + 1

n(z∗,α)2u
∗
ll − u∗cT ′′(z∗)

z∗

n(z∗,α)2u∗cl(1− T ′(z∗)) + 1
n(z∗,α)2u∗l + z∗

n(z∗,α)3u∗ll

)∣∣∣
z∗=z̃

we get:

(
T (z∗−)− T (z∗+)

) u∗−c
1
m2

(
u∗−l z∗− − u∗+l z∗+

)f(m,α1) =

lim
(z̃→z∗−)−

− T ′(z̃)ũc
z̃

n(z̃,α1)
ũcl

ũl
ũc
− ũl − z̃

n(z̃,α1)
ũll
n(z̃, α1)2f(n(z̃, α1), α1)

(40)

where u∗− = u
(
z∗− − T (z∗−), z

∗−

m
;α1

)
, ũ = u

(
z̃ − T (z̃), z̃

n(z̃,α1)
;α1

)
etc., and where

we have substituted (1 − T ′(z∗)) = −
1

n(z∗,α1)
u∗l

u∗c
, and where m = n(z∗−, α1) denotes the

productivity level of the individual with multiple optima.
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We will now use the Mean Value Theorem to rewrite the LHS of Equation 40. Con-

sider the function ĉ(z;m,α1, ū) which implicitly solves u
(
ĉ, z

m
;α1

)
= ū, where ū =

u
(
z∗− − T (z∗−), z

∗−

m
;α1

)
= u

(
z∗+ − T (z∗+), z

∗+

m
;α1

)
. Thus, ĉ(z;m,α1, ū) denotes the

consumption level for any income z that keeps utility for type (m,α1) constant at ū. By

construction, ĉ(z∗−) = c(z∗−) and ĉ(z∗+) = c(z∗+) (where, for ease of notation, we omit

m,α1, ū as arguments of ĉ(·)).

Given ĉ(z∗−) = c(z∗−) and ĉ(z∗+) = c(z∗+), we get T (z∗−) = z∗−−ĉ(z∗−) and T (z∗+) =

z∗+ − ĉ(z∗+). Thus, by the Mean Value Theorem we know for some z1 ∈ (z∗−, z∗+) the

following holds:

T (z∗+)− T (z∗−)

z∗+ − z∗−
=

(
∂(z − ĉ(z))

∂z

) ∣∣∣
z=z1

= 1 +
1

m

ul
(
ĉ(z1), z1

m
;α1

)
uc
(
ĉ(z1), z1

m
;α1

) (41)

where we used the implicit function theorem on u
(
ĉ(z), z

m
;α1

)
= ū to get ∂ĉ(z)

∂z
=

− 1
m

ul(ĉ(z), zm ;α1)
uc(ĉ(z), zm ;α1)

.

Similarly, by the Mean Value Theorem we know for some z2 ∈ (z∗−, z∗+) the following
holds:

u∗+l z∗+ − u∗−l z∗−

z∗+ − z∗−
=

(
∂

∂z
ul

(
ĉ(z),

z

m
;α1

)
z

) ∣∣∣
z=z2

=

(
ul

(
ĉ(z2),

z2
m

;α1

)
− ucl

(
ĉ(z2),

z2
m

;α1

) ul (ĉ(z2), z2m ;α1

)
uc
(
ĉ(z2), z2m ;α1

) z2
m

+ ull

(
ĉ(z2),

z2
m

;α1

) z2
m

)

≡
(
ul − ucl

ul
uc

z

m
+ ull

z

m

) ∣∣∣
ĉ,z=z2

(42)

Thus, we can rewrite our optimality condition using Equations 41 and 42, substituting

in T ′(z̃) = 1 +
1

n(z̃,α1)
ũl

ũc
, and multiplying both sides by −1:(

1 + 1
m

ul(ĉ(z1),
z1
m

;α1)
uc(ĉ(z1),

z1
m

;α1)

)
u∗−c

−
(
ul − ucl uluc

z
m

+ ull
z
m

) ∣∣∣
ĉ,z=z2

m2f(m,α1) =

lim
(z̃→z∗−)−

(
1 + 1

n(z̃,α1)
ũl
ũc

)
ũc

−ũl + z̃
n(z̃,α1)

ũcl
ũl
ũc
− z̃

n(z̃,α1)
ũll
n(z̃, α1)2f(n(z̃, α1), α1)

Evaluating the limit on the RHS, noting n(z∗−;α1) = m and that utility is twice continu-

ously differentiable (so we can pass limits through the derivatives of the utility function)

we get:(
1 + 1

m

ul(ĉ(z1),
z1
m

;α1)
uc(ĉ(z1),

z1
m

;α1)

)
u∗−c(

−ul + z
mucl

ul
uc
− z

mull

) ∣∣∣
ĉ,z=z2

m2f(m,α1) =

(
1 + 1

m

u∗−l
u∗−c

)
u∗−c

−u∗−l + z∗−

m u∗−cl
u∗−l
u∗−c
− z∗−

m u∗−ll

m2f(m,α1) (43)
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Let’s first compare the numerators on either side of Equation 43. First, note that

by our assumption that T (z) is everywhere increasing, we know that T (z∗+)−T (z∗−)
z∗+−z∗− =(

1 + 1
m

ul(ĉ(z1),
z1
m

;α1)
uc(ĉ(z1),

z1
m

;α1)

)
> 0. By our assumption on convexity of indifference curves, we

know that − 1
m

ul(ĉ(z1),
z1
m

;α1)
uc(ĉ(z1),

z1
m

;α1)
> − 1

m

ul

(
ĉ(z∗−), z

∗−
m

;α1

)
uc
(
ĉ(z∗−), z

∗−
m

;α1

) = − 1
m

ul

(
c(z∗−), z

∗−
m

;α1

)
uc
(
c(z∗−), z

∗−
m

;α1

) as z1 > z∗−.

Thus, 0 < 1 + 1
m

ul(ĉ(z1),
z1
m

;α1)
uc(ĉ(z1),

z1
m

;α1)
< 1 + 1

m

u∗−l
u∗−c

. Moreover, u∗−c > 0. Hence we have that the

numerators on the LHS and RHS are both positive and the numerator on the LHS is

smaller.

Now let’s compare the denominators on either side of Equation 43. We assume that

−ul+ z
n
ucl

ul
uc
− z

n
ull is increasing in z along each individual’s indifference curve so that the

denominator of Equation 43 on the LHS is bigger than the denominator of Equation 43

on the RHS as z2 > z∗−. Given that −ul + z
n
ucl

ul
uc
− z

n
ull > 0 by the SCP (see Appendix

A.3.1), we therefore have that both denominators are positive.

Thus, we have that the LHS of Equation 43 is smaller than the RHS of Equation 43

meaning Equation 43 cannot hold. This proves that the tax schedule cannot be differen-

tiable at z∗−; an entirely analogous argument can be used to show that the tax schedule

cannot be differentiable at z∗+. Hence, any optimal tax schedule that is increasing must

feature marginal tax rates that change discontinuously at all z ∈ {zmulti }. Finally, to

show that the tax schedule must feature marginal tax rates that increase discontinuously

∀ z ∈ {zmulti }, we simply note that if the tax schedule decreased discontinuously at some

z ∈ {zmulti }, then no individual would find that z optimal, which contradicts the fact

that z is an optimal income for some individual.69 Hence, the tax schedule must increase

discontinuously at all z ∈ {zmulti }.

A.14 Proof of Proposition 6

Proof. First, we know that there exists a minimum income chosen in society. Specifically,

denote z as the lowest income chosen in society under the optimal tax schedule, where z

solves:

z = min
α
{z∗(nα;α)}α∈A

where nα = min
n

supp(f(n|α)). Moreover, by Lemma 1 we know that any nα locating

at z must have ∂z∗

∂n

∣∣
(nα,α)

> 0.70 We also know that H(z̃|α) = F (n(z̃, α)|α), so that

h(z) =
∑

α∈A f(nα, α)∂z
∗

∂n

∣∣
(nα,α)

> 0, where A = {α s.t z∗(nα;α) = z}.

69An indifference curve diagram in (c, z) space shows that no one locates at kinks where the tax rate
decreases.

70Given we assume that the lowest income chosen in society under the optimal tax schedule, z, is not
chosen by any individual with multiple optimal incomes, i.e., z /∈ {zmulti }, we know that the tax schedule
is twice differentiable at z so that ∂z∗

∂n

∣∣
(nα,α)

exists.
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Next, consider the following τ(z) function (with twice continuously differentiable expan-

sions between [z̃−dz̃2, z̃] and [z̃+dz̃, z̃+dz̃+dz̃2] constructed analogously as in Appendix

A.4): 
τ(z) = dz̃ if z ≤ z̃ − dz̃2

τ(z) = −z + z̃ + dz̃2 if z ∈ [z̃, z̃ + dz̃]

τ(z) = 0 if z ≥ z̃ + dz̃ + dz̃2

where z̃ and dz̃ are chosen s.t. z̃ + dz̃ + dz̃2 < min{zmulti } and z̃ + dz̃ + dz̃2 < min{Ki}
(this is possible by Assumption 3 and Assumption 4). Following the same method in the

paper of perturbing the optimal tax schedule in the direction of τ(z), we get the following

condition for the optimal tax schedule:∫ z̃

z

(1− ω̄(z∗))h(z∗)dz∗ +
T ′(z̃)

1− T ′(z̃)
z̃Z̄c

z̃h(z̃)−
∫ z̃

z

T ′(z∗)

1− T ′(z∗)
η̄z∗h(z∗)dz∗ = 0

Taking the limit as z̃ → z from the right, we get:

T ′(z)

1− T ′(z)
zZ̄c

zh(z) = 0

zZ̄cz
1−T ′(z) simplifies to

∑
α∈A

−uc
(
z−T (z), z

nα
;α
)

SOC(z,nα,α)
p(α|z̃). We know that −uc < 0. Also, SOC < 0

∀α by the fact that z /∈ {zmulti } and Appendix A.3. Also, we showed above that h(z) > 0.

Thus, in order to satisfy T ′(z)
1−T ′(z)zZ̄

c
zh(z) = T ′(z)

∑
α∈A

−uc
(
z−T (z), z

nα
;α
)

SOC(z,nα,α)
p(α|z̃)h(z) = 0, it

must be the case that the optimal tax schedule has T ′(z) = 0.

A.15 Proof of Proposition 7

Proof. By an entirely analogous argument as in the proof of Proposition 6, there exists

a maximum income chosen in society z̄ with h(z̄) > 0.

Again, by assumption z̄ /∈ {zmulti }. From Equation 11, we know that for z̃ >

max{zmulti } and z̃ > max{Ki} (such a maximum exists by Assumption 3 and Assumption

4), the optimal tax schedule must satisfy the following condition:∫ z̄

z̃

(1− ω̄(z∗))h(z∗)dz∗ − T ′(z̃)

1− T ′(z̃)
z̃Z̄c

z̃h(z̃)−
∫ z̄

z̃

T ′(z∗)

1− T ′(z∗)
η̄z∗h(z∗)dz∗ = 0
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Taking the limit as z̃ → z̄ from the left, we get:

− T ′(z̄)

1− T ′(z̄)
z̄Z̄c

z̄h(z̄) = 0

By the same arguments as in the proof to Proposition 6, we know that z̄Z̄cz̄
1−T ′(z̄) > 0. As

we also know that h(z̄) > 0, this implies that the optimal tax schedule has T ′(z̄) = 0.

A.16 Deriving Equation 13

We can simplify Equation 12 into a second order differential equation by first using the

following relationship, which holds at all points of differentiability of the tax schedule:

h(z̃|α) = f(n(z̃, α)|α)
∂n(z∗, α)

∂z∗

∣∣∣
z∗=z̃

= f(n(z̃, α)|α)

[
u∗cc(1− T ′(z∗))2 + 2

n
u∗cl(1− T ′(z∗)) + 1

n2u
∗
ll − u∗cT ′′(z∗)

z∗

n2u∗cl(1− T ′(z∗)) + 1
n2u∗l + z∗

n3u∗ll

] ∣∣∣
z∗=z̃

Substituting this into Equation 12 we get:

∑
α∈A

[
−1 + ω(z̃, α) +

T ′(z̃)

1− T ′(z̃)
ηz̃,α

]
∂n(z∗, α)

∂z∗

∣∣∣
z∗=z̃

f(n(z̃, α)|α)p(α)−

∂

∂z̃

[∑
α∈A

T ′(z̃)

1− T ′(z̃)
z̃Zc

z̃,α

∂n(z∗, α)

∂z∗

∣∣∣
z∗=z̃

f(n(z̃, α)|α)p(α)

]
= 0

and plugging in z̃Zc
z̃,α = −(1− T ′(z̃)) ũc

ũcc(1−T ′(z̃))2+ 2
n
ũcl(1−T ′(z̃))+ 1

n2 ũll−ũcT ′′(z̃)
we get:

∑
α∈A

[
−1 + ω(z̃, α) +

T ′(z̃)

1− T ′(z̃)
ηz̃,α

]
∂n(z∗, α)

∂z∗

∣∣∣
z∗=z̃

f(n(z̃, α)|α)p(α)+

∂

∂z̃

[∑
α∈A

ũcT
′(z̃)

z̃
n2 ũcl(1− T ′(z̃)) + 1

n2 ũl + z̃
n3 ũll

f(n(z̃, α)|α)p(α)

]
= 0

where ũc = uc

(
z̃ − T (z̃), z̃

n(z̃,α)
;α
)

etc.
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B Optimal Tax Formulas for Continuously Distributed

α

In this section we derive formulas for the optimal tax schedule under the assumption that

F (n, α) is twice continuously differentiable in both arguments.

B.1 Government Problem

The government problem is now written as:

max
T (z)

∫
A

∫ ∞
0

W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
dF (n, α)

s.t.

∫
A

∫ ∞
0

c∗(n, α)dF (n, α) + E ≤
∫
A

∫ ∞
0

z∗(n, α)dF (n, α)

z∗(n, α) ∈ argmax
z

u
(
z − T (z),

z

n
;α
)
∀n, α

c∗(n, α) = z∗(n, α)− T (z∗(n, α))

Without loss of generality, we set E = 0. The government Lagrangian is given by:

L =

∫
A

∫ ∞
0

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
f(n, α)dndα

B.2 Technical Assumptions

We make the following technical assumptions. As in the main text, we assume the (SCP)

(Assumption 1). This implies Lemma 1 still holds (i.e., z∗(n, α) is non-decreasing in n ∀
α and is increasing in n ∀ α whenever T ′(z) exists). However, Lemma 2 must be adjusted

to the following:

Lemma 4. If (SCP) holds, the set of individuals with multiple optimal income levels is

measure 0.

Proof. For each α, the set of types n with multiple optima is countable by the proof of

Lemma 4. Label them mi(α) for i = 1, 2, 3, .... If a given α only has a finite number

k of types n who have multiple optimal incomes, set mi(α) = 0 for i > k. Note the

graph of the function mi(α) has measure 0 in N × A (as the graph of any measurable

function is measure 0).71 Then, the set of individuals with multiple optima is contained

in ∪∞i=1mi(α), and the countable union of measure 0 sets is measure 0.

We continue to assume that Assumption 2 holds, so that, for any α, there exists a

71We assume that mi(α) is a measurable function, which rules out pathological cases.

67



minimum distance D1 between the productivity levels of individuals with that α who have

multiple optimal income levels. Again, this assumption is needed to rule out pathological

settings whereby all individuals with rational productivity levels have multiple optima,

for example.

We no longer make Assumption 3 (that there is a minimum difference between the

elements of {zmulti }) as this no longer seems plausible for continuous α. For instance,

if type (n, α1) has multiple optima at z∗−, by continuity arguments, it seems entirely

plausible that type (n, α1 − ε) has a multiple optima at z∗− − δ with δ → 0 as ε → 0.

Instead of Assumption 3, we assume that the set of individuals for whom z∗ is one of

their multiple optimal income levels is measure zero for all z∗ in Assumption 5:

Assumption 5. Let A(z̃, z̃+ dz̃) denote the set of types α for whom there is some (n, α)

with multiple optimal incomes, one of which is between z̃ and z̃ + dz̃. Then:

lim
dz̃→0

∫
A(z̃,z̃+dz̃)

f(α)dα = 0

Finally, we make the following assumption on the shape of the optimal tax schedule:

Assumption 6. T (z) is everywhere twice continuously differentiable.

Note, we no longer need to allow for the tax schedule to have kink points (as we did in

Assumption 4). With discrete α, we needed to allow for kink points in the tax schedule as

the income density, h(z∗), discontinuously changes at each {zmulti } as no individual with

type α can locate in between any {z∗−i (α), z∗+i (α)} by the (SCP). With continuous α, it

is still true that no individual of type α type can locate between {z∗−i (α), z∗+(α)}; but,

provided that only a measure 0 set of individuals locating at any {zmulti } are multiple

optima individuals by Assumption 5, then h(z∗) will evolve continuously so that we no

longer need to allow for kinks in the tax schedule.

B.3 All Individuals Have A Unique Optimal Income

We will now derive a differential equation that characterizes the optimal tax schedule.

Like in the main text, we first will derive a condition assuming that all agents’ have

one global optimal income level under the optimal tax schedule. We then relax this

assumption and show how this changes the differential equation characterizing the optimal

tax schedule.

We know that starting from the optimal tax schedule, the derivative of the government

Lagrangian in the direction of τ(z) must be 0. Thus, the optimal schedule must satisfy
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the following condition:

∂

∂µ

[∫
A

∫ ∞
0

[
W

(
u

(
z∗ − T (z∗)− µτ(z∗),

z∗

n
;α

)
;n, α

)
+ λ(T (z∗) + µτ(z∗))

]
dF (n, α)

] ∣∣∣
µ=0

= 0

where we omit that z∗ is a function of (n, α) as well as the perturbed schedule T (·)+µτ(·).
Because the tax schedule is everywhere differentiable by Assumption 6 we have:∫

A

∫
N

[
−Wu(u

∗)u∗cτ(z∗) + λ

(
T ′(z∗)

∂z∗

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dF (n, α) = 0 (44)

where Wu = ∂W (u;n, α)/∂u and u∗ = u
(
z∗ − T (z∗) , z

∗

n
;α
)
.

Next, because the SOC holds strictly for all individuals by Lemma 3, we can use

Equation 2 to rewrite ∂z∗

∂µ
|µ=0 in terms of elasticities. We can also rewrite Equation 44 in

terms of the optimal income distribution (we can do this because z∗(n, α) is increasing

in n by Assumption 6 and Lemma 1):∫
A

∫
Z

[
−Wu(u∗)u∗cτ(z∗)− λ

(
T ′(z∗)

(
Zcz∗,αz

∗

1− T ′(z∗)
τ ′(z∗) +

ηz∗,α
1− T ′(z∗)

τ(z∗)

)
− τ(z∗)

)]
dH(z∗, α) = 0

(45)

where H(z∗, α) = F (n(z∗, α), α), and where u∗, u∗c ,
∂z∗

∂µ
|µ=0 are now functions of (z∗, α),

e.g., u∗ = u
(
z∗ − T (z∗), z∗

n(z∗,α)
;α
)

.

We now consider the same τ(z) function as in the main text (see Appendix A.4 for the

definition of τ(z)). Plugging the values of τ(z) and τ ′(z) into Equation 45, we can use the

same logic as in Appendix A.5 to yield Equation 46, a differential equation characterizing

the optimal tax schedule:∫ ∞
z̃

(1− ω̄(z∗))h(z∗)dz∗ − T ′(z̃)

1− T ′(z̃)
z̃Z̄c

z̃h(z̃)−
∫ ∞
z̃

T ′(z∗)

1− T ′(z∗)
η̄z∗h(z∗)dz∗ = 0 (46)

where ω̄(z∗) =
∫
A
Wu(u∗)u∗c

λ
dH(α|z∗) denotes the average social welfare weight at income

z∗, Z̄c
z̃ =

∫
A
Zc
z̃,αdH(α|z̃) denotes the average compensated elasticity at income z̃, η̄z∗ =∫

A
ηz∗,αdH(α|z∗) denotes the average income effect parameter at z∗.

B.4 What if Individuals have Multiple Optimal Incomes?

In deriving Equation 46, we assumed that all agents had one global optimal income level

under the optimal tax schedule. However, there is no reason why this assumption need

be true. We now proceed to derive the differential equation characterizing the optimal

tax schedule allowing for a measure 0 set of agents to have multiple optimal income

levels. To do so, first let us assume that there exists at most one n for each α that has
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multiple optimal income levels under the optimal tax schedule. Denote the productivity

levels of these individuals as m(α).72 Specifically, m(α) satisfies the following indifference

condition:

u

(
z∗−(α)− T (z∗−(α)),

z∗−(α)

m(α)
;α

)
= u

(
z∗+(α)− T (z∗+(α)),

z∗+(α)

m(α)
;α

)

where z∗− and z∗+(α) denote (m(α), α)′s minimum and maximum optimal incomes, re-

spectively. Note, we have suppressed that z∗−(α), z∗+(α), and m(α) are also functions of

the tax schedule. Using this notation, we rewrite the government Lagrangian as follows:

L =

∫
A

∫ m(α)

0

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n, α)+∫

A

∫ ∞
m(α)

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n, α)

Now consider perturbing the optimal tax schedule in the direction of τ(z). Using the

same derivation as in Section 3.2, we get:

∂m(α)

∂µ

∣∣∣
µ=0

= −u
∗−
c (α) τ (z∗−(α))− u∗+c (α) τ (z∗+(α))

u∗−l (α) z∗−(α)
m(α)2 − u∗+l (α) z∗+(α)

m(α)2

(47)

where u∗+c (α) = uc

(
z∗+(α)− T (z∗+(α)), z

∗+(α)
m(α)

;α
)

and u∗−l (α) = ul

(
z∗−(α)− T (z∗−(α)), z

∗−(α)
m(α)

;α
)

,

etc.

Next, we use Leibniz’s integral rule to take the derivative of the government Lagrangian

in the direction of τ(z), starting from the optimal tax schedule:∫
A

∫ ∞
0

[
−Wu(u

∗)u∗cτ(z∗) + λ

(
∂T (z∗)

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dF (n, α)+∫

A

[
W
(
u∗−(α)

)
+ λT (z∗−(α))

∂m(α)

∂µ

∣∣∣
µ=0

]
f(m(α)|α)dF (α)−∫

A

[
W
(
u∗+(α)

)
+ λT (z∗+(α))

∂m(α)

∂µ

∣∣∣
µ=0

]
f(m(α)|α)dF (α) = 0

Note that in the first term above, we integrate over the entire set of individuals (even

those with multiple optima). The value that we assign to ∂T (z∗)
∂µ
|µ=0 for those with multiple

optima is irrelevant because the set with multiple optima is measure 0, so does not affect

72If no type α individual has multiple optimal incomes, set m(α) = 0.
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the integral in the first term. Noting that u∗−(α) = u∗+(α) ∀ α, we get:∫
A

∫ ∞
0

[
−Wu(u

∗)u∗cτ(z∗) + λ

(
∂T (z∗)

∂µ

∣∣∣
µ=0

+ τ(z∗)

)]
dF (n, α)+∫

A

λ
(
T
(
z∗−(α)

)
− T

(
z∗+(α)

)) ∂m(α)

∂µ

∣∣∣
µ=0

f(m(α)|α)︸ ︷︷ ︸
jumping effects

dF (α) = 0
(48)

Let us now explore the jumping effects in Equation 48 in more detail. We know

by Equation 47 that the value of these jumping effects will depend on the tax changes

experienced at z∗−(α) and z∗+(α). We consider the same τ(z) function as in the main

body of the text (see Appendix A.4 for the definition of τ(z)).

As in Section 3.2, if z∗+(α) < z̃ − dz̃2, the jumping effect for these α′s will be equal

to 0 as as τ (z∗+(α)) = τ (z∗−(α)) = 0 implying ∂m(α)
∂µ
|µ=0 = 0.

Next consider z∗+(α) > z̃+dz̃+dz̃2 and z∗−(α) < z̃−dz̃2. For these α′s, the jumping

effect in Equation 48 will be equal to:

λ
(
T
(
z∗−(α)

)
− T

(
z∗+(α)

)) u∗+c (α) dz̃

u∗−l (α) z∗−(α)
m(α)2 − u∗+l (α) z∗+(α)

m(α)2

f (m(α)|α) ≡ J1(α)λdz̃

as τ (z∗+(α)) = dz̃ and τ (z∗−(α)) = 0.

Now consider z∗−(α) > z̃+ dz̃+ dz̃2. For these α′s, the jumping effect in Equation 48

will be equal to:

λ
(
T
(
z∗−(α)

)
− T

(
z∗+(α)

)) u∗+c (α) dz̃ − u∗−c (α) dz̃

u∗−l (α) z∗−(α)
m(α)2 − u∗+l (α) z∗+(α)

m(α)2

f (m(α)|α) ≡ J2(α)λdz̃

as τ (z∗+(α)) = τ (z∗−(α)) = dz̃.

However, differently from Section 3.2, we can no longer pick z̃ and dz̃ to ensure that

{zmulti } /∈ [z̃ − dz̃2, z̃ + dz̃ + dz̃2] because we no longer make Assumption 3. Let A(z̃ −
dz̃2, z̃+dz̃+dz̃2) denote the set of α for whom at least one of (m(α), α)′s optimal incomes

fall in [z̃ − dz̃2, z̃ + dz̃ + dz̃2].73

Note, from the definition of τ(z) in Appendix A.4, τ(z) ∈ [0, dz̃ + 2dz̃2], so that the

jumping effect for each of these α′s is less than:

λ
(
T
(
z∗+(α)

)
− T

(
z∗−(α)

)) u∗−c (α) (dz̃ + 2dz̃2)

u∗−l (α) z∗−(α)
m(α)2 − u∗+l (α) z∗+(α)

m(α)2

f(m(α)|α)

73Note, if we were to relax the assumption that only one n for each α has multiple incomes, we know
that by Assumption 2, for sufficiently small dz̃, only one (mi(α), α) can have a multiple optimal income
within [z̃ − dz̃2, z̃ + dz̃ + dz̃2] for each α.

71



Thus, the total jumping effect for those with a multiple optima in [z̃ − dz̃2, z̃ + dz̃ + dz̃2]

is less than:∫
A(z̃−dz̃2,z̃+dz̃+dz̃2)

λ
(
T
(
z∗+(α)

)
− T

(
z∗−(α)

)) u∗−c (α) (dz̃ + 2dz̃2)

u∗−l (α) z∗−(α)
m(α)2 − u∗+l (α) z∗+(α)

m(α)2

f(m(α)|α)dF (α)

<

∫
A(z̃−dz̃2,z̃+dz̃+dz̃2)

(dz̃ + 2dz̃2)BdF (α)

whereB is a constant that bounds λ (T (z∗+(α))− T (z∗−(α))) u∗−c (α)

u∗−l (α)
z∗−(α)

m(α)2
−u∗+l (α)

z∗+(α)

m(α)2

f(m(α)|α)

on [z̃ − dz̃2, z̃ + dz̃ + dz̃2].74 Finally, as in Section 3.2 we divide Equation 48 by λdz̃

and taking the limit as dz̃ → 0. The jumping effect for those with multiple optima in

[z̃ − dz̃2, z̃ + dz̃ + dz̃2] goes to 0 by Assumption 5. Rearranging the other terms as in

Appendix A.5 we get an analogous optimality condition for the tax schedule:∫ ∞
z̃

(1− ω̄(z∗)) dH(z∗)− T ′(z̃)

1− T ′(z̃)
z̃Z̄c

z̃h(z̃)−
∫ ∞
z̃

T ′(z∗)

1− T ′(z∗)
η̄z∗dH(z∗)

+

∫
A

[
J1(α)1

(
z∗−(α) < z̃ < z∗+(α)

)
+ J2(α)1

(
z∗−(α) > z̃

)]
f(α)dα = 0

(49)

Equation 49 gives us a condition that the optimal tax schedule must satisfy at all

income levels under the assumption that there is at most one type n for each α with

multiple optima.

Finally, we can relax the assumption that there exists at most one n for each α

with multiple optima. As in Section 3.2, we allow there to exist a countable number of

individuals with multiple optima for each α. Denote mi(α) as the ith productivity level

with multiple optimal incomes, and denote their minimum optimal income as z∗−i (α)

and their maximum optimal income as z∗+i (α). Denote the number of individuals with

multiple incomes for a given α as M(α) (which can also be countably infinite or zero).

Given this new notation, we can write the government’s Lagrangian as:75

L =

∫
A

∫ m1(α)

0

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n, α)+∫

A

M(α)−1∑
i=1

∫ mi+1(α)

mi(α)

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n, α)+∫

A

∫ ∞
mM(α)(α)

[
W

(
u

(
c∗(n, α),

z∗(n, α)

n
;α

)
;n, α

)
+ λT (z∗(n, α))

]
dF (n, α)

74We assume such a bound exists. Given that u∗−l (α) z
∗−(α)
m(α)2 − u

∗+
l (α) z

∗+(α)
m(α)2 > 0 ∀(m(α), α) by SCP

(see Appendix A.13), if we assume utility is continuous in α (as well as in n) and the support of F (n, α)
is closed and bounded, the extreme value theorem gives us that such a bound exists.

75We’ve used Assumption 2 to ensure that the set {mi(α)} can be totally ordered using the usual
relation <, so that we can write out the Lagrangian as a sum over integrals with endpoints in {mi(α)}.
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Using identical logic as before, we can augment Equation 49 as:∫ ∞
z̃

(1− ω̄(z∗)) dH(z∗)− T ′(z̃)

1− T ′(z̃)
z̃Z̄c

z̃h(z̃)−
∫ ∞
z̃

T ′(z∗)

1− T ′(z∗)
η̄z∗dH(z∗)∫

A

M(α)∑
i=1

[
J1i(α)1

(
z∗−i (α) < z̃ < z∗+i (α)

)
+ J2i(α)1

(
z∗−i (α) > z̃

)]
f(α)dα = 0

(50)

Equation 50 gives us a differential equation the optimal tax schedule must satisfy at

all income levels.

C Simulation Appendix

C.1 Step-by-Step Simulation Procedure

Below we discuss our simulation procedure when we allow for the possibility that one

individual has multiple optima under the optimal tax schedule (note, this is an endogenous

assumption and needs to be checked). The procedure can be augmented to allow for

more individuals with multiple optimal incomes. This procedure is written for the utility

function and government social welfare function described in Section 5.2.

First, set values of α1,α2 (note, under linear taxes, Zc
i = 1

αi
), where, WLOG, α1 < α2.

Set primitive distributions: f(n|α1) for n ∈ Nα1 and f(n|α2) for n ∈ Nα2 where Nαi are

closed, bounded sets. Let p(α1), p(α2) reflect proportions of type 1 and 2 in society. Note,

for simplicity, we choose the minimum skill for type 2, nα2
to satisfy n

1+α2
α2

α2 = n
1+α1
α1

α1 , and

the maximum skill for type 2, nα2 , to satisfy n
1+α2
α2

α2 = n
1+α1
α1

α1 so that both type 1 and type

2 locate at the minimum and maximum incomes chosen in society under the optimal tax

schedule, which features 0 marginal rates at the top and bottom - see Propositions 6 and

7, respectively. We assume some individual with type α1 has two optimal income levels.76

We check afterwards that no α2 individual has multiple optimal incomes.

1. Choose initial values for
[
λ, T (z), (nl, α1), (m,α1), T ′j1, T

′
j2

]
, where T ′j1, T

′
j2 denote

the sizes of the two jumps in the marginal tax rate schedule, (m,α1) denotes our

individual with multiple optima, and (nl, α1) denotes the individual who picks the

same income level as the individual with multiple optima, (m,α1), and who’s FOC

is satisfied (from the left) at this income level, i.e., (nl, α1) has his FOC satisfied

from the left at z∗− where z∗− denotes the minimum income chosen by our multiple

76Indifference curves for type α1 individuals are less steep than for type α2 type individuals; one can
see from an indifference curve diagram that individuals with less steep indifference curves will be more
likely to have multiple optimal incomes than individuals with steeper indifference curves.
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optima individual (m,α1). We assume exogenous government expenditures, E, are

0.

2. Determine initial values:

(a) Set T ′(z) = 0, where z solves:

z = min

(
n

1+α1
α1

α1 , n
1+α2
α2

α2

)
where nαi = minNαi . This expression comes from substituting in T ′(z) = 0

into (nα1
, α1) and (nα2

, α2) FOCs. Note, by our choice of Nα1 and Nα2 , we

know that n
1+α1
α1

α1 = n
1+α2
α2

α2 .

(b) Determine optimal utility at z, u(z;αi), using following expression:

u(z;αi) = z + T (z)−

(
z
nαi

)1+αi

1 + αi

(c) Save vector of starting values: [z, Y (z)] = [z, T ′(z), u(z;α1), u(z, α2)]

3. Determine Y ′(z) = [T ′′(z), u′(z;α1), u′(z, α2)]:

(a) For i = 1, 2, calculate the ni for type αi whose FOC is satisfied at z:

ni(z;αi) =

(
zαi

1− T ′(z)

) 1
1+αi

(b) For i = 1, 2, calculate f(ni|αi)

(c) If n(z;α1) = nl:
77

i. Change the marginal tax rate at z to T ′(z) + T ′j1.

ii. Save the value of this income level as z∗−.

iii. Calculate the utility for our multiple optima individual:78

u(z∗−;m,α1) = z∗− − T (z∗−)−

(
z∗−

m

)1+α1

1 + α1

iv. Restart at the beginning of Step 3.

(d) If z > z∗− and u(z;m,α1) < u(z∗−;m,α1):

i. Change f(n1|α1) = 0 (because no α1 type can locate in (z∗−, z∗+))

77Technically, we check that n(z;α1) ≥ nl and n(z − ε;α1) < nl.
78Denoting the skill level of individual who’s FOC is satisfied from the right at income z∗− as nr, we

know our indifferent individual’s skill level m must satisfy nl ≤ m ≤ nr.
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(e) If u(z,m, α1) = u(z∗−;m,α1):79

i. Change the marginal tax rate at z to be T ′(z) = T ′(z) + T ′j2

ii. Restart at the beginning of Step 3.

(f) Calculate ω(z;αi) using following equation:

ω(z;αi) =
1

u(z;αi)λ
=

1

λ

(
z + T (z)−

(
z

n(z;αi)

)1+αi

1+αi

)

(g) Solve for T ′′(z), ∂n(z;α1)
∂z

, and ∂n(z;α2)
∂z

using Equation 14 and the following

equation (which holds for i = 1, 2):

∂n(z;αi)

∂z
=

αi
1 + αi

(z(1− T ′(z)))
−1

1+αi +
1

1 + αi
z

αi
1+αi (1− T ′(z))

−2−αi
1+αi T ′′(z)

(h) Calculate ∂u(z;αi)
∂z

using the following equation:80

∂u(z;αi)

∂z
=

z1+αi

n(z;αi)2+αi

∂n(z;αi)

∂z

(i) Save Y ′(z) = [T ′′(z), ∂u(z;α1)
∂z

, ∂u(z;α2)
∂z

]

(j) Save f(n1(z;α1)|α1) and f(n2(z;α2)|α2)

4. Determine Y (z + ε) using a first-order Taylor Series expansion:

Y (z + ε) = Y (z) + εY ′(z)

5. Repeat steps 3 and 4 until z = z, the highest income chosen by any type.

6. Under the tax schedule that solves the differential equation for given initial values,

calculate:

R =
2∑
i=1

p(αi)

∫ nαi

nαi

T (z(n;αi))f(n|αi)dn

where z(n;αi) solves z = (n1+αi(1− T ′(z)))
1
αi .81

7. Search over values of T (z) until R = 0 so that the government budget constraint is

satisfied.

8. Search to find λ, (nl, α1), (m,α1), T ′j1, T
′
j2 that maximize welfare.

79Technically, we check that u(z;m,α1) ≥ u(z∗−;m,α1) and u(z − ε;m,α1) < u(z∗−;m,α1).
80This expression comes from applying the envelope theorem and then doing a change of variables

from n to z.
81Note, we account for the fact that there is bunching at kink points when calculating R.
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9. Check that z assigned to each person (n, α) maximizes utility for that type.
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C.2 Optimal Consumption Schedules

Figure 10: Optimal Consumption Schedules for Various Percentages of Type 2 Individuals
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